Skip to main content Accessibility help
×
Home

A Direct Solver for Initial Value Problems of Rarefied Gas Flows of Arbitrary Statistics

  • Jaw-Yen Yang (a1), Bagus Putra Muljadi (a1) (a2), Zhi-Hui Li (a3) (a4) and Han-Xin Zhang (a3) (a4)

Abstract

An accurate and direct algorithm for solving the semiclassical Boltzmann equation with relaxation time approximation in phase space is presented for parallel treatment of rarefied gas flows of particles of three statistics. The discrete ordinate method is first applied to discretize the velocity space of the distribution function to render a set of scalar conservation laws with source term. The high order weighted essentially non-oscillatory scheme is then implemented to capture the time evolution of the discretized velocity distribution function in physical space and time. The method is developed for two space dimensions and implemented on gas particles that obey the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Computational examples in one- and two-dimensional initial value problems of rarefied gas flows are presented and the results indicating good resolution of the main flow features can be achieved. Flows of wide range of relaxation times and Knudsen numbers covering different flow regimes are computed to validate the robustness of the method. The recovery of quantum statistics to the classical limit is also tested for small fugacity values.

Copyright

Corresponding author

References

Hide All
[1]Abramowitz, M. and Stegun, I. A.Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover printing, tenth gpo printing edition, 1964.
[2]Ancona, M. G. and Iafrate, G. J.Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B, 39(13):95369540,May 1989.
[3]Ancona, M. G. and Tiersten, H. F.Macroscopic physics of the silicon inversion layer. Phys. Rev. B, 35(15):79597965, May 1987.
[4]Bhatnagar, P. L., Gross, E. P., and Krook, M.A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94(3):511525, May 1954.
[5]Carrillo, J. A., Gamba, I. M., Majorana, A., and Shu, C.-W.A weno-solver for the 1d non-stationary boltzmann Vpoisson system for semiconductor devices. Journal of Computational Electronics, 1:365370, 2002. 10.1023/A:1020751624960.
[6]Carrillo, J. A., Gamba, I. M., Majorana, A., and Shu, C.-W.A direct solver for 2d non-stationary boltzmann-poisson systems for semiconductor devices: A mesfet simulation by weno-boltzmann schemes. Journal of Computational Electronics, 2:375380, 2003. 10.1023/B:JCEL.0000011455.74817.35.
[7]Carrillo, J. A., Gamba, I. M., Majorana, A., and Shu, C.-W.A weno-solver for the transients of boltzmann-poisson system for semiconductor devices: performance and comparisons with monte carlo methods. Journal of Computational Physics, 184(2):498 525, 2003.
[8]Chapman, S. and Cowling, T. G.The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. Cambridge University Press, 1970.
[9]Chen, G.Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Mit-Pappalardo Series in Mechanical Engineering). Oxford University Press, USA, Mar. 2005.
[10]Deng, X. G. and Zhang, H. X.Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 165:2444, 2000.
[11]Fatemi, E. and Odeh, F.Upwind finite difference solution of boltzmann equation applied to electron transport in semiconductor devices. Journal of Computational Physics, 108(2):209 217, 1993.
[12]Gardner, C. L.The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math., 54(2):409427, 1994.
[13]Harten, A.High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49(3):357 393, 1983.
[14]Harten, A. and Lax, P. D.On a class of high resolution total-variation-stable finite-difference schemes. SIAM Journal on Numerical Analysis, 21(1):pp. 123, 1984.
[15]Hsieh, T.-Y. and Yang, J.-Y.Thermal conductivity modeling of circular-wire nanocomposites. Journal of Applied Physics, 108:044306, 2010.
[16]Huang, A. B. and Giddens, D. P.The Discrete Ordinate Method for the Linearized Boundary Value Problems in Kinetic Theory of Gases. In Brundin, C. L., editor, Rarefied Gas Dynamics, Volume 1, pages 481+, 1967.
[17]Jiang, G.-S., Levy, D., Lin, C.-T., Osher, S., and Tadmor, E.High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM Journal on Numerical Analysis, 35(6):pp. 21472168, 1998.
[18]Jin, S.Runge-kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys, 122:5167, 1995.
[19]Jin, S. and Levermore, C. D.Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys, 126:449467, 1996.
[20]Jin, S. and Xin, Z. P.The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Communications on Pure and Applied Mathematics, 48:235, 2006.
[21]Kadanoff, L. P. and Baym, G.Quantum Statistical Mechanics. Benjamin, New York, 1962.
[22]Lax, P. D. and Liu, X. D.Solution of two dimensional riemann problem of gas dynamics by positive schemes. SIAM J. Sci. Comput, 19:319340, 1995.
[23]Li, Z.-H. and Zhang, H.-X.Numerical investigation from rarefied flow to continuum by solving the boltzmann model equation. Intern. J. Numer. Fluids, 42:361382, 2003.
[24]Li, Z.-H. and Zhang, H.-X.Study on gas kinetic unified algorithm for flows from rarefied transition to continuum. Journal of Computational Physics, 193:708738, 2004.
[25]Lundstrom, M.Fundamentals of Carrier Transport. Cambridge University Press, 2nd edition, 2000.
[26]Majorana, A. and Pidatella, R. M.A finite difference scheme solving the boltzmann-poisson system for semiconductor devices: Volume 174, number 2 (2001), pages 649668. Journal of Computational Physics, 177(2):450 450, 2002.
[27]Markowich, P. A., Ringhofer, C. A., and Schmeiser, C.Semiconductor Equations. Springer, 1 edition, 2002.
[28]Nikuni, T. and Griffin, A.Hydrodynamic damping in trapped bose gases. Journal of Low Temperature Physics, 111:793814, 1998.
[29]Pattamatta, A. and Madnia, C. K.Modeling electron-phonon nonequilibrium in gold films using boltzmann transport model. Journal of Heat Transfer, 131:0824011, 2009.
[30]Scaldaferri, S., Curatola, G., and Iannaccone, G.Direct solution of the boltzmann transport equation and poisson schrodinger equation for nanoscale mosfets. IEEE Transaction on Electron Devices, 54:2901, 2007.
[31]Schultz-Rinne, C. W., Collins, J. P., and Glaz, H. M.Numerical solution of the riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput., 14(6):13941414, 1993.
[32]Shi, Y. H. and Yang, J. Y.A gas kinetic bgk scheme for semiclassical boltzmann hydrodynamic transport. Journal of Computational Physics, 227(22):9389 9407, 2008.
[33]Shizgal, B.A gaussian quadrature procedure for use in the solution of the boltzmann equation and related problems. Journal of Computational Physics, 41(2):309 328, 1981.
[34]Uehling, E. A. and Uhlenbeck, G. E.Transport phenomena in einstein-bose and fermi-dirac gases. i. Phys. Rev., 43(7):552561, Apr 1933.
[35]Leer, B. van. Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov’s method. Journal of Computational Physics, 32(1):101 136, 1979.
[36]Wigner, E.On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40(5):749759, Jun 1932.
[37]Woolard, D. L., Tian, H., Littlejohn, M. A., Kim, K. W., Trew, R. J., Ieong, M. K., and Tang, T. W.Construction of higher-moment terms in the hydrodynamic electron transport model. Journal of Applied Physics, 74(10):6197 6207, nov 1993.
[38]Xu, Z. and Shu, C.-W.Anti-diffusive flux corrections for high order finite difference weno schemes. Journal of Computational Physics, 205(2):458 485, 2005.
[9]Yang, J. Y., Hsieh, T. Y., and Shi, Y. H.Kinetic flux vector splitting schemes for ideal quantum gas dynamics. SIAM J. Sci. Comput., 29(1):221244,2007.
[40]Yang, J. Y. and Huang, J. C.Rarefied flow computations using nonlinear model boltzmann equations. Journal of Computational Physics, 120(2):323 339, 1995.
[41]Yang, J. Y. and Shi, Y. H.A kinetic beam scheme for ideal quantum gas dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462(2069):15531572, 2006.
[42]Zhang, H.-X.Non-oscillatory and non-free-parameter dissipation difference scheme. Acta Aerodynamica Sinica, 9(6):143165, 1988.

Keywords

A Direct Solver for Initial Value Problems of Rarefied Gas Flows of Arbitrary Statistics

  • Jaw-Yen Yang (a1), Bagus Putra Muljadi (a1) (a2), Zhi-Hui Li (a3) (a4) and Han-Xin Zhang (a3) (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed