Skip to main content Accessibility help

Dimension-Reduced Hyperbolic Moment Method for the Boltzmann Equation with BGK-Type Collision

  • Zhenning Cai (a1), Yuwei Fan (a1), Ruo Li (a2) and Zhonghua Qiao (a3)


We develop the dimension-reduced hyperbolic moment method for the Boltzmann equation, to improve solution efficiency using a numerical regularized moment method for problems with low-dimensional macroscopic variables and high-dimensional microscopic variables. In the present work, we deduce the globally hyperbolic moment equations for the dimension-reduced Boltzmann equation based on the Hermite expansion and a globally hyperbolic regularization. The numbers of Maxwell boundary condition required for well-posedness are studied. The numerical scheme is then developed and an improved projection algorithm between two different Hermite expansion spaces is developed. By solving several benchmark problems, we validate the method developed and demonstrate the significant efficiency improvement by dimension-reduction.


Corresponding author



Hide All
[1]Bhatnagar, P. L., Gross, E. P., and Krook, M., A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94(3) (1954), 511525.
[2]Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon Press, 1994.
[3]Cai, Z., Fan, Y., and Li, R., Globally hyperbolic regularizationof Grad’s moment system, Commun. Pure Appl. Math., 2013.
[4]Cai, Z., Fan, Y., and Li, R., Globally hyperbolic regularization of Grad’s moment system in one dimensional space, Commun. Math Sci., 11(2) (2013), 547571.
[5]Cai, Z. and Li, R., Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation, SIAM J. Sci. Comput., 32(5) (2010), 28752907.
[6]Cai, Z., Li, R., and Qiao, Z., NRxx simulation of microflows with Shakhov model, SIAM J. Sci. Comput., 34(1) (2012), A339–A369.
[7]Cai, Z., Li, R., and Qiao, Z., Globally hyperbolic regularized moment method with applications to microflow simulation, Computer Fluids, 81 (2013), 95109.
[8]Cai, Z., Li, R., and Wang, Y., An efficient NRxx method for Boltzmann-BGK equation, J. Sci. Comput., 50(1) (2012), 103119.
[9]Cai, Z., Li, R., and Wang, Y., Numerical regularized moment method for high Mach number flow, Commun. Comput. Phys., 11(5) (2012), 14151438.
[10]Chu, C. K., Kinetic-theoretic description of the formation of a shock wave, Phys. Fluids, 8(1) (1965), 1222.
[11]Degond, P., Pareschi, L., and Russo, G. editors, Modeling and Computational Methods for Kinetic Equations, Birkhäuser, 2004.
[12]Dubroca, B. and Mieussens, L., A conservative and entropic discrete-velocity model for rarefied polyatomic gases, in CEMRACS 1999 (Orsay), volume 10 of ESAIM Proc., pages 127139, Paris, 1999, Soc. Math. Appl. Indust.
[13]Filbet, F. and Jin, S., A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys., 229 (2010), 76257648.
[14]Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2(4) (1949), 331407.
[15]Gu, X. J. and Emerson, D. R., A computational strategy for the regularized 13 moment equations with enhanced wall-boundary equations, J. Comput. Phys., 255(1) (2007), 263283.
[16]Gu, X-J., Emerson, D. R., and Tang, G.-H., Kramers’ problem and the Knudsen minimum: a theoretical analysis using a linearized 26-moment approach, Continuum Mech. Thermo-dyn., 21 (2009), 345360.
[17]Huang, J. C., Xu, K., and Yu, P., A unified gas-kinetic scheme for continuum and rarefied flows II: multi-dimensional cases, Commun. Comput. Phys., 12 (2012), 662690.
[18]Jin, S. and Slemrod, M., Regularization of the Burnett equations via relaxation, J. Stat. Phys., 103(5-6) (2001), 10091033.
[19]John, B., Gu, X.-J, and Emerson, D. R., Investigation of heat and mass transfer in a lid-driven cavity under nonequilibrium flow conditions, Numer. Heat Transfer, 58 (2010), 287303.
[20]Karniadakis, G., Beskok, A., and Aluru, N., Microflows: Fundamentals and Simulation, Springer, New York, 2001.
[21]Karniadakis, G., Beskok, A., and Aluru, N., Microflows and Nanoflows: Fundamentals and Simulation, volume 29 of Interdisciplinary Applied Mathematics, Springer, New York, U.S.A., 2005.
[22]Kosik, R., Numerical Challenges on the Road to NanoTCAD, PhD thesis, Technische Uni-versität Wien, August 2004.
[23]Dal Maso, G., LeFloch, P. G., and Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74(6) (1995), 483548.
[24]Clerk Maxwell, J., On stresses in rarefied gases arising from inequalities of temperature, Proc. R. Soc. Lond., 27(185-189) (1878), 304308.
[25]Mieussens, L., Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics, Math. Models Methods Appl. Sci., 10(8) (2000), 11211149.
[26]Müller, I. and Ruggeri, T., Rational Extended Thermodynamics, Second Edition, volume 37 of Springer Tracts in Natural Philosophy, Springer-Verlag, New York, 1998.
[27]Rhebergen, S., Bokhove, O., and Vegt, J. J. W. van der, Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., 227(3) (2008), 18871922.
[28]Shakhov, E. M., Generalization of the Krook kinetic relaxation equation, Fluid Dyn., 3(5) (1968), 9596.
[29]Struchtrup, H. and Torrilhon, M., Regularization of Grad’s 13 moment equations: Derivation and linear analysis, Phys. Fluids, 15(9) (2003), 26682680.
[30]Torrilhon, M., Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson-IV-distributions, Commun. Comput. Phys., 7(4) (2010), 639673.
[31]Xu, K. and Huang, J. C., A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys., 229 (2010), 77477764.
[32]Xu, K. and Huang, J. C., An improved unified gas-kinetic scheme and the study of shock structures, IMA J. Appl. Math., 76 (2011), 698711.
[33]Yang, J. Y. and Huang, J. C., Rarefied flow computations using nonlinear model Boltzmann equations, J. Comput. Phys., 120(2) (1995), 323339.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed