Skip to main content Accessibility help

Diffusion in Ni-Based Single Crystal Superalloys with Density Functional Theory and Kinetic Monte Carlo Method

  • Min Sun (a1), Zi Li (a2), Guo-Zhen Zhu (a3), Wen-Qing Liu (a4), Shao-Hua Liu (a5) and Chong-Yu Wang (a1) (a6)...


In the paper, we focus on atom diffusion behavior in Ni-based superalloys, which have important applications in the aero-industry. Specifically, the expressions of the key physical parameter – transition rate (jump rate) in the diffusion can be given from the diffusion theory in solids and the kinetic Monte Carlo (KMC) method, respectively. The transition rate controls the diffusion process and is directly related to the energy of vacancy formation and the energy of migration of atom from density functional theory (DFT). Moreover, from the KMC calculations, the diffusion coefficients for Ni and Al atoms in the γ phase (Ni matrix) and the γʹ phase (intermetallic compound Ni3Al) of the superalloy have been obtained. We propose a strategy of time stepping to deal with the multi-time scale issues. In addition, the influence of temperature and Al concentration on diffusion in dilute alloys is also reported.


Corresponding author

*Corresponding author. Email addresses: (C.-Y.Wang), (M. Sun)


Hide All
[1] Reed, R. C.. The Superalloys: Fundamentals and Applications. New York: Cambridge University Press; 2006.
[2] Shewmon, P.. Diffusion in Solids. 2nd TMS, Warrendale, PA; 1989, p.223.
[3] Wang, Y., Liu, Z. K. and Chen, L. Q.. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater. 2004; 52:26652671.
[4] Zhu, T., Wang, C. Y., Gan, Y., Effect of Re in γ phase, γʹ phase and γ/γʹ interface of Ni-based single-crystal superalloys, Acta Mater. 2010; 58:20452055.
[5] Ziegler, A., Idrobo, J. C., Cinibulk, M. K., Kisielowski, C., N. D.|Browning, Ritchie, R. O.. Interface structure and atomic bonding characteristics in silicon nitride ceramics. Science 2004; 306:17681770.
[6] Srinivasan, R., Banerjee, R., Hwang, J. Y., Viswanathan, G. B., Tiley, J., Dimiduk, D. M., Fraser, H. L.. Atomic scale structure and chemical composition across order-disorder interfaces. Phys. Rev. Lett. 2009; 102:086101.
[7] Yasuda, H. Y., Nakajima, H., Koiwa, M.. Diffusion in L12-type intermetallic compounds. Defect Diffus. Forum. 1993; 95:823830.
[8] Krčmar, M., Fu, C. L., Janotti, A., Reed, R. C.. Diffusion rates of 3D transition metal solutes in nickel by first-principles calculations. Acta Mater. 2005; 53:23692376.
[9] Mantina, M., Wang, Y., Chen, L. Q., Liu, Z. K., Wolverton, C.. First principles impurity diffusion coefficients, Acta Mater. 2009; 57:41024108.
[10] Zhang, X., Wang, C. Y.. First-principles study of vacancy formation and migration in clean and Re-doped γʹ-Ni3Al. Acta Mater. 2009; 57:224231.
[11] Yu, X. X., Wang, C. Y.. The effect of alloying elements on the dislocation climbing velocity in Ni: A first-principles study. Acta Mater. 2009; 57:59145920.
[12] Zhu, T., Wang, C.-Y.. Misfit dislocation networks in the γ/γʹ phase interface of a Ni-Based single-crystal superalloys: Molecular dynamics simulations. Phys. Rev. B 2005; 72:014111.
[13] Du, J. P., Wang, C. Y., Yu, T.. Construction and application of multi-elements EAM potential (Ni-Al-Re) in γ/γʹ Ni-based single crystal superalloys. Modelling Simul. Mater. Sci. Eng. 2013; 21:015007.
[14] Liu, Z.-G., Wang, C.-Y., Yu, T.. Molecular dynamics simulations of influence of Re on lattice trapping and fracture stress of cracks in Ni. Comput. Mater. Sci. 2014; 83:196205.
[15] Liu, S. L., Wang, C. Y., Yu, T.. Influence of the alloying elements Re, Co and W on the propagation of the Ni/Ni3Al interface crack. RSC Advances 2015; 5:5247352480.
[16] Wang, C., Wang, C.-Y.. Ni/Ni3Al interface: A density functional theory study. Applied Surface Science 2009; 255:36693675.
[17] Wang, Y.-J., Wang, C.-Y.. A comparison of the ideal strength between L12Co3(Al,W) and Ni3Al under tension and shear from first-principles calculations. Applied Physics Letters 2009; 94:261090.
[18] Wu, X., Wang, C. Y.. Density functional theory study of the thermodynamic and elastic properties of Ni-based superalloys. J. Phys.: Condensed Matter 2015; 27:295401.
[19] Mehrer, H.. Diffusion in solids: Fundamentals, methods, materials, diffusion-controlled processes. Springer Science & Business Media, 2007, p.5665, 70-72, 80-82, 98-99, 327-331, 355-357.
[20] Koiwa, M., Numakura, H., Ishioka, S.. Diffusion in L12 type intermetallic compounds. Defect and Diffusion Forum. 1997; 143:209222.
[21] Koiwa, M., Ishioka, S.. Random walks and correlation factor in diffusion in a three-dimensional lattice with coordination number 8. Philos. Mag. A 1983; 48:19.
[22] Voter, A. F.. Radiation Effects in Solids. Edited by Sickafus, K. E., Kotomin, E. A., Uberuaga, B. P.. Dordrecht: Springer, NATO Publishing Unit, 2006; p. 124.
[23] Vineyard, G. H.. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids, 1957; 3:121127.
[24] Fichthorn, K. A., Weinberg, W. H.. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys., 1991; 95:1090.
[25] Young, W. M., Elcock, E. W.. Monte Carlo studies of vacancy migration in binary ordered alloys: I. Proc. Phys. Soc. 1966; 89:735.
[26] Kinzel, W., Selke, W., Binder, K.. Phase transitions on centered rectangular lattice gases: A model for the adsorption of H on Fe(110). Surf. Sci. 1982; 121:13.
[27] Sahni, P. S., Grest, G. S., Safran, S. A.. Temperature dependence of domain kinetics in two dimensions. Phys. Rev. Lett., 1983; 50:60.
[28] Stepanyuk, V. S., Negulyaev, N. N., Niebergall, L., Longo, R. C., Bruno, P.. Adatom self-organization induced by quantum confinement of surface electrons. Phys. Rev. Lett., 2006; 97:186403.
[29] Ziegler, M., Kröger, J., Berndt, R., Filinov, A., Bonitz, M.. Scanning tunneling microscopy and kinetic Monte Carlo investigation of cesium superlattices on Ag(111). Phys. Rev. B 2008; 78:245427.
[30] Chen, Z., Kioussis, N., Tu, K.-N., Ghoniem, N., Yang, J.-M.. Inhibiting adatom diffusion through surface alloying. Phys. Rev. Lett. 2010; 105:015703.
[31] Watkins, P. K., Walker, A. B., and Verschoor, G. L. B.. Dynamical Monte Carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology. Nano Lett. 2005; 5:1814.
[32] Zhang, X., Li, Z., Lu, G.. First-principles simulations of exciton diffusion in organic semiconductors. Phys. Rev. B 2011; 84:235208.
[33] Voter, A. F.. Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100). Phys. Rev. B 1986; 34:6819.
[34] DeLorenzi, G., Flynn, C. P., Jacucci, G.. Effect of anharmonicity on diffusion jump rates. Phys. Rev. B 1984; 30:5430.
[35] Sørensen, M. R., Voter, A. F.. Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 2000; 112:9599.
[36] Srinivasan, R., Banerjee, R., Hwang, J. Y., Viswanathan, G. B., Tiley, J., Dimiduk, D. M., Fraser, H. L.. Atomic scale structure and chemical composition across order-disorder interfaces. Phys. Rev. Lett. 2009; 102:086101.
[37] Reed, R. C., Yeh, A. C., Tin, S., Babu, S. S., Miller, M. K.. Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scripta Materialia 2004; 51:327331.
[38] Yu, X. X., Wang, C. Y., Zhang, X. N., Yan, P., Zhang, Z.. Synergistic effect of rhenium and ruthenium in nickel-based single-crystal superalloys, J. Alloys Compd. 2014; 582:299304.
[39] Yeh, A. C., Tin, S.. Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys, Scripta Materialia 2005; 52:519524.
[40] Henkelman, G., Uberuaga, B. P., Jónsson, H.. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000; 113:99019904.
[41] Wert, C. A.. Diffusion Coefficient of C in α-Iron. Phys. Rev. 1950; 79:601.
[42] Eyring, H.. The activated complex in chemical reactions. J. Chem. Phys. 1935; 3:107115.
[43] Li, Z., Zhang, X., Cristiano, F., Lu, W. G.. Understanding molecular structure dependence of exciton diffusion in conjugated small molecules. Appl. Phys. Lett. 2014; 104:143303.
[44] Kresse, G., Hafner, J.. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993; 47:558.
[45] Kresse, G., Furthmüller, J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996; 54:11169.
[46] Blöchl, P. E.. Projector augmented-wave method. Phys. Rev. B 1994; 50:17953.
[47] Kresse, G., Joubert, D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999; 59:1758.
[48] Kohn, W., Sham, L. J.. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965; 140:A1133-A1138.
[49] Lomer, W. M.. Vacancies and other point defects in metals and alloys. Institute of Metals, London, 1958; 79.
[50] Herzig, C., Divinski, S.. Diffusion in Intermetallic Compounds in: Diffusion Processes in Advanced Technological Materials. William Andrew, Inc., 2005.
[51] Zhang, P., Xu, Y., Zheng, F., Wu, S. Q., Yang, Y., Zhu, Z. Z.. Ion diffusion mechanism in PnNaxLi2-xMnSiO4. Cryst. Eng. Comm. 2015; 17:21232128.
[52] Hanggi, P., Talkner, P., Borkovec, M.. Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 1990; 62:251.
[53] Gillespie, D. T.. Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems. J. Comp. Phys. 1976; 22: 403.
[54] Fichthorn, K. A., Weinberg, W. H.. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 1991; 95: 1090.
[55] Perdew, J. P., Burke, K., Ernzerhof, M.. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996; 77:3865.
[56] Harada, H., Ishida, A., Murakami, Y., Bhadeshia, H. K. D. H., Yamazaki, M.. Atom-probe microanalysis of a nickel-base single crystal superalloy. Appl. Surf. Sci. 1993; 67:299304.
[57] Monkhorst, H. J., Pack, J. D.. Special points for Brillouin-zone integrations. Phys. Rev. B 1976; 13:5188.
[58] Lee, B. J., Shim, J. H., Baskes, M. I.. Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 2003; 68:144112.
[59] Smedskjaer, L. C., Fluss, M. J., Legnini, D. G., Chason, M. K., Siegel, R. W.. Positron Annihilation. Amsterdam: North-Holland; 1982.
[60] Maier, K., Peo, M., Saile, B., Schaefer, H. E., Seeger, A.. High-temperature positron annihilation and vacancy formation in refractory metals. Philos. Mag. A 1979; 40:701728.
[61] Wycisk, W., Kniepmeier, M. F.. Quenching experiments in high purity Ni. J. Nucl. Mater. 1978; 69:616619.
[62] Ortega, M. G., Ramos de Debiaggi, S. B., Monti, A. M.. Self-Diffusion in FCC Metals: Static and dynamic simulations in aluminium and nickel. Phys. Status Solidi (b) 2002; 234:506.
[63] Smithells, C. J.. Metals Reference Book, seventh ed. Oxford: Butterworth-Heinemann; 1992.
[64] Wu, Q., Li, S. S., Ma, Y., Gong, S. K.. First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model. Chin. Phys. B 2012; 21:109102.
[65] Gust, W., Hintz, M. B., Loddwg, A., Odelius, H., Predel, B.. Impurity diffusion of Al in Ni single crystals studied by secondary ion mass spectrometry (SIMS). Phys. Status Solidi (a) 1981; 64:187194.
[66] Gong, X. F., Yang, G. X., Fu, Y. H., Xie, Y. Q., Zhuang, J., Ning, X. J.. First-principles study of Ni/Ni3Al interface strengthening by alloying elements. Comput. Mater. Sci. 2009; 47:320325.
[67] Cardellini, F., Cleri, F., Mazzone, G., Montone, A., Rosato, V.. Experimental and theoretical investigation of the order-disorder transformation in Ni3Al. J. Mater. Res. 1993; 8:25042509.
[68] Badura-Gergen, K., Schaefer, H. E.. Thermal formation of atomic vacancies in Ni3Al. Phys. Rev. B 1997; 56:3032.
[69] Wang, T.M., Shimotomai, M., Doyama, M.. Study of vacancies in the intermetallic compound Ni3Al by positron annihilation. J. Phys. F: Metal Phys. 1984; 14:37.
[70] Chen, G. X., Wang, D. D., Zhang, J. M., Huo, H. P., Xu, K. W.. Self-diffusion of Ni in the intermetallic compound Ni3Al. Physica B 2008; 403:35383542.
[71] Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990; 92:508517.
[72] Delley, B. Analytic energy derivative in the numerical local-density-functional approach. J. Chem. Phys. 1991; 94:72457250.


Related content

Powered by UNSILO

Diffusion in Ni-Based Single Crystal Superalloys with Density Functional Theory and Kinetic Monte Carlo Method

  • Min Sun (a1), Zi Li (a2), Guo-Zhen Zhu (a3), Wen-Qing Liu (a4), Shao-Hua Liu (a5) and Chong-Yu Wang (a1) (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.