Skip to main content Accessibility help

Conforming Hierarchical Basis Functions

  • M. J. Bluck (a1)


A unified process for the construction of hierarchical conforming bases on a range of element types is proposed based on an ab initio preservation of the underlying cohomology. This process supports not only the most common simplicial element types, as are now well known, but is generalized to squares, hexahedra, prisms and importantly pyramids. Whilst these latter cases have received (to varying degrees) attention in the literature, their foundation is less well developed than for the simplicial case. The generalization discussed in this paper is effected by recourse to basic ideas from algebraic topology (differential forms, homology, cohomology, etc) and as such extends the fundamental theoretical framework established by the work of Hiptmair and Arnold et al. for simplices. The process of forming hierarchical bases involves a recursive orthogonalization and it is shown that the resulting finite element mass, quasi-stiffness and composite matrices exhibit exponential or better growth in condition number.


Corresponding author



Hide All
[1]Abdul-Rahman, R. and Kasper, M.. Orthogonal hierarchical nedelec elements. IEEE Trans. Magn. (USA), 44(6): 12101213, 2008.
[2]Andersen, L.S. and Volakis, J.L.. Hierarchical tangential vector finite elements for tetrahedra. IEEE Microw. Guid. Wave Lett. (USA), 8(3): 127129, 1998.
[3]Andersen, L.S. and Volakis, J.L.. Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics. IEEE Trans. Antennas Propag. (USA), 47(1): 112120, 1999.
[4]Arnold, D.N., Falk, R.S., and Winther, R.. Finite element exterior calculus, homological techniques, and applications. Acta Numer. (UK), 15: 1155, 2006.
[5]Bluck, M. J., Hatzipetros, A., and Walker, S. P.. Applications of differential forms to boundary integral equations. IEEE Transactions on Antennas and Propagation, 54(6): 17811796, 2006.
[6]Bluck, M. J. and Walker, S. P.. Polynomial basis functions on pyramidal elements. Communications in Numerical Methods in Engineering, 2007.
[7]Bossavit, A.. Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc. A, Phys. Sci. Meas. Instrum. Manage. Educ. Rev. (UK), 135(8): 493500, 1988.
[8]Bossavit, A.. Simplicial finite elements for scattering problems in electromagnetism. Comput. Methods Appl. Mech. Eng. (Netherlands), 76(3): 299316, 1989.
[9]Bossavit, A.. Generating whitney forms of polynomial degree one and higher. IEEE Transactions on Magnetics, 38(2, pt.1), 2002.
[10]Eastwood, J.W. and Morgan, J.G.. Higher-order basis functions for mom calculations. IET Sci. Meas. Technol. (UK), 2(6): 379386, 2008.
[11]Falk, R. S., Gatto, P., and Monk, P.. Hexahedral h(div) and h(curl) finite elements. ESAIM: Mathematical Modelling and Numerical Analysis, 45(1): 115143, 2011.
[12]Gradinaru, V. and Hiptmair, R.. Whitney elements on pyramids. Electron. Trans. Numer. Anal., 8: 154168, 1999.
[13]Graglia, R. D. and Gheorma, I. L.. Higher order interpolatory vector bases on pyramidal elements. IEEE Transactions on Antennas and Propagation, 47(5): 775, 1999.
[14]Graglia, R. D., Wilton, D. R., and Peterson, A. F.. Higher order interpolatory vector bases for computational electromagnetics. IEEE Transactions on Antennas and Propagation, 45(3): 329, 1997.
[15]Graglia, R.D., Peterson, A.F., and Andriulli, F.P.. Curl-conforming hierarchical vector bases for triangles and tetrahedra. Antennas and Propagation, IEEE Transactions on, 59(3): 950959, March 2011.
[16]Hiptmair, R.. Canonical construction of finite elements. Mathematics of Computation, 68(228): 1325, 1999.
[17]Hiptmair, R.. Higher order whitney forms. Journal of Electromagnetic Waves and Applications, 15(3): 341, 2001.
[18]Hiptmair, R.. Finite elements in computational electromagnetism. Acta Numerica, 11: 237, 2002.
[19]Ilic, M.M. and Notaros, B.M.. Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling. IEEE Trans. Microw. Theory Tech. (USA), 51(3): 10261033, 2003.
[20]Ilic, M.M. and Notaros, B.M.. Higher order large-domain hierarchical fem technique for electromagnetic modeling using legendre basis functions on generalized hexahedra. Electromagnetics (UK), 26(7): 517529, 2006.
[21]Ingelstrom, P.. A new set of h(curl)-conforming hierarchical basis functions for tetrahedral meshes. IEEE Trans. Microw. Theory Tech. (USA), 54(1): 106114, 2006.
[22]Ingelstrom, P., Hill, V., and Dyczij-Edlinger, R.. Comparison of hierarchical basis functions for efficient multilevel solvers. IET Sci. Meas. Technol. (UK), 1(1): 4852, 2007.
[23]Nakahara, M.. Geometry, topology and physics. Second edition. IOP Publishing, 2003.
[24]Nedelec, J. C.. Mixed finite elements in r/sup 3. Numerische Mathematik, 35(3): 315, 1980.
[25]Schoberl, J. and Zaglmayr, S.. High order nedelec elements with local complete sequence property. COMPEL, 24(2): 374384, 2005.
[26]Showalter, R.E.. Hilbert Space Methods for Partial Differential Equations. Pitman Publishing, London, 1977.
[27]Webb, J.P.. Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propag. (USA), 47(8): 12441253, 1999.
[28]Xin, J. and Cai, W.. A well-conditioned hierarchical basis for triangular h(curl)-conforming elements. Commun. Comput. Phys., 9(3): 780806, 2011.
[29]Xin, J., Guo, N., and Cai, W.. On the construction of well-conditioned hierarchical bases for tetrahedral h(curl)-conforming nedelec elements. Journal of Computational Mathematics, 29(5): 526542, 2011.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed