Skip to main content Accessibility help
×
Home

Computational Study of Interstitial Hydrogen Atoms in Nano-Diamond Grains Embedded in an Amorphous Carbon Shell

  • Amihai Silverman (a1), Alon Hoffman (a2) and Joan Adler (a3)

Abstract

The properties of hydrogen atoms in a nano-diamond grain surrounded by an amorphous carbon shell are studied with Tight Binding computer simulations. Our samples model nano-diamond grains, of a few nanometers in size, that nucleate within an amorphous carbon matrix, as observed in deposition from a hydrocarbon rich plasma. The calculations show that the average hydrogen interstitial formation energy in the amorphous region is lower than in the nano-diamond core, therefore hydrogen interstitial sites in the in the amorphous region are more stable than in the nano-diamond core. This formation energy difference is the driving force for the diffusion of hydrogen atoms from nano-diamond grains into amorphous carbon regions. An energy well was observed on the amorphous side of the nano-diamond amorphous carbon interface: hydrogen atoms are expected to be trapped here. This scenario agrees with experimental results which show that hydrogen retention of diamond films increases with decreasing grain size, and suggest that hydrogen is bonded and trapped in nano-diamond grain boundaries and on internal grain surfaces.

Copyright

Corresponding author

*Corresponding author.Email:phr76ja@technion.ac.il

References

Hide All
[1]Michaelson, Sh., Ternyak, O., Hoffman, A. and Lifshitz, Y., Correlation between diamond grain size and hydrogen retention in diamond films studied by scanning electron microscopy and secondary ion mass spectroscopy, Appl. Phys. Lett., 90 (2007), 031914.
[2]Michaelson, Sh., Ternyak, O., Akhvlediani, R., Williams, O. A., Gruen, D. and Hoffman, A., Hydrogen concentration and bonding in nano-diamond films of varying grain sizes grown by different chemical vapor deposition methods, Phys. Stat. Sol., 204 (2007), 28602867.
[3]Michaelson, Sh., Ternyak, O., Akhvlediani, R., Hoffman, A., Lafosse, A., Azria, R., Williams, O. A. and Gruen, D. M., Hydrogen concentration and bonding configuration in poly-crystalline diamond films: from micro-to nanometric grain size, J. Appl. Phys., 102 (2007), 113516.
[4]Lifshitz, Y., Meng, X. M., Lee, S. T., Akhvlediani, R. and Hoffman, A., Visualization of diamond nucleation and growth from energetic species, Phys. Rev. Lett., 93 (2004), 056101.
[5]Hoffman, A., Heiman, A., Akhvlediani, R., Lakin, E., Zolotoyabko, E. and Cytermann, C., Hydrogen content and density in nanocrystalline films of a predominant diamond character, J. Appl. Phys., 94 (2003), 45894595.
[6]Michaelson, Sh., Ternyak, O., Hoffman, A. and Lifshitz, Y., Correlation between diamond grain size and hydrogen retention in diamond films studied by scanning electron microscopy and secondary ion mass spectroscopy, Appl. Phys. Lett., 90 (2007), 031914.
[7]Ito, A. and Nakamura, H., Molecular dynamics simulation of bombardment of hydrogen atoms on graphite surface, Commun. Comput. Phys., 4 (2008), 592610.
[8]Frauenheim, Th., Weich, F., Kohler, Th., Uhlmann, S., Porezag, D. and Seifert, G., Density-functional-based construction of transferable nonorthogonal tight-binding potentials for Si and SiH, Phys. Rev. B., 52 (1995), 1149211501.
[9]The Frauenheims Tight Binding (FTB) method is based on a second-order expansion of the Kohn-Sham total energy in density-functional theory [Kohn, W. and Sham, L. J., Phys. Rev., 140, (1965), A1133–A1138] with respect to charge density fluctuations. The zeroth order approach is equivalent to a common standard non-self-consistent tight-binding scheme, while at second order a transparent, parameter-free, and readily calculable expression for generalized Hamiltonian matrix elements is derived. The final approximate Kohn-Sham energy additionally includes a Coulomb interaction between charge fluctuations.
[10]Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Suhai, S. and Seifert, G., Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B., 58 (1998), 72607268.
[11]Kohn, W. and Sham, L. J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, (1965), A1133–A1138.
[12]Car, R. and Parrinello, M., Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55 (1985), 24712474.
[13]Fraunheim, Th., Blaudek, P., Stephan, U. and Jungnikel, G., Atomic structure and physical properties of amorphous carbon and its hydrogenated analogs, Phys. Rev. B., 48 (1993), 48234834;
Frauenheim, Th., Jungnickel, G., Kohler, Th. and Stephan, U., Structure and electronic properties of amorphous carbon: from semimetallic to insulating behaviour, J. Non-Cryst. Solids., 182 (1992), 186197.
[14]Stillinger, F. and Weber, T. A., Computer simulation of local order in condensed phases of silicon, Phys. Rev. B., 31 (1985), 52625271.
[15]Barnard, A. S. and Russo, S. P., Development of an improved stillinger-weber potential for tetrahedral carbon using ab-initio (Hartree-Fock and MP2) methods, Mol. Phys., 100(10) (2002), 15171525.
[16]Silverman, A., Adler, J. and Weil, R., Computer modelling of the diffusion mechanisms of fluorine in amorphous silicon, Thin. Solid. Films., 193/194 (1990), 571576.
[17]Zallen, Richard, The Physics of Amorphous Solids, Wiley-Interscience, New York, 1983.
[18]Sorkin, A., Adler, J. and Kalish, R., Computer simulations of damage due to passage of a heavy fast ion through diamond, Phys. Rev. B., 70 (2004), 064110.
[19]Kopidakis, G., Remediakis, I. N., Fyta, M. G. and Kelires, P. C., Atomic and electronic structure of crystalline-amorphous carbon interfaces, Diam. Relat. Mater., 16 (2007), 18751881.
[20]Michaelson, Sh., Akhvlediani, R., Hoffman, A., Silverman, A. and Adler, J., Hydrogen in nano-diamond films: experimental and computational studies, Phys. Stat. Sol., 205 (2008), 2099–2107.
[21]Parrinello, M. and Rahman, A., Crystal structure and pair potentials: a molecular-dynamics study, Phys. Rev. Lett., 45 (1980), 11961199.
[22]Parrinello, M. and Rahman, A., A polymorphic transitions in single-crystals: a new molecular dynamics method, J. Appl. Phys., 52 (1981), 7158.
[23]Saada, D., Adler, J. and Kalish, R., Computer simulation of damage in diamond due to ion impact and its annealing, Phys. Rev. B., 59 (1999), 66506660.
[24]Horsfield, A. P., Efficient ab initio tight binding, Phys. Rev. B., 56 (1997), 65946602.
[25]Horsfield, A. P. and Bratkovsky, A. M., Ab initio tight binding, J. Phys. Condens. Mat., 12 (2000), R1.
[26]Press, William H., Teukolsky, Saul A., William Vetterling, T. and Flannery, Brian P., Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, 2007.
[27]Adler, J., Fox, J., Kalish, R., Mutat, T., Sorkin, A. and Warszawski, E., The essential role of visualization for modeling nanotubes and nanodiamond, Comput. Phys. Commun., 177 (2007), 1920.
[28]Stohr, Joachim, NEXAFS Spectroscopy (Springer Series in Surface Sciences), Springer, 2003.
[29]Warszawski, E., Hoffman, A., Silverman, A. and Adler, J., Experiment (NEXAFS) versus simulation (DOS) for carbon allotropes, Bulletin of the Israel Physical Society, 52 (2006), 38; and to appear in Computer Physics Communications.
[30]Marks, N. A., McKenzie, D. R., Pailthorpe, B. A., Bernasconi, M. and Parrinello, M., Microscopic structure of tetrahedral amorphous carbon, Phys. Rev. Lett., 76 (1996), 768771.
[31]Marks, N. A., McKenzie, D. R., Pailthorpe, B. A., Bernasconi, M. and Parrinello, M., Ab initio simulations of tetrahedral amorphous carbon, Phys. Rev. B., 54 (1996), 97039714.
[32]McCulloch, D. G., McKenzie, D. R. and Goringe, C. M., Ab initio simulations of the structure of amorphous carbon, Phys. Rev. B., 61 (2000), 23492355.
[33]Hoffman, A., Petravic, M., Comtet, G., Heurtel, A., Hellner, L. and Dujardin, G., Photon-stimulated desorption of H+ and H- ions from diamond surfaces: evidence for direct and indirect processes, Phys. Rev. B., 59 (1999), 32033209.
[34]Saada, D., Adler, J. and Kalish, R., Lowest-energy site for hydrogen in diamond, Phys. Rev B., 61 (1999), 1071110715.
[35]Goss, J. P., Jones, R., Heggie, M. I., Ewels, C. P., Briddon, P. R. and Oberg, S., First principles studies of H in diamond, Phys. Stat. Sol. A., 186 (2001), 263268.
[36]Goss, J. P., Jones, R., Heggie, M. I., Ewels, C. P., Briddon, P. R. and Oberg, S., Theory of hydrogen in diamond, Phys. Rev. B., 65 (2002), 115207115220.
[37]Kaukonen, M., Peräjoki, J., Nieminen, R. M., Jungnickel, G. and Frauenheim, Th., Locally activated monte carlo method for long-time-scale simulations, Phys. Rev. B., 61 (2000), 980987.
[38]Nishimatsu, T., Ab initio study of donor-hydrogen complexes for low-resistivity n-type diamond semiconductor, Jpn. J. Appl. Phys., 41 (2002), 19521962.
[39]Herrero, C. P. and Ramirez, R., Diffusion of muonium and hydrogen in diamond, Phys. Rev. Lett., 99 (2007), 205504205508.
[40]Briddon, P., Jones, R. and Lister, G. M. S., Hydrogen in diamond, J. Phys. C., 21 (1988), L1027–L1031.
[41]Heggie, M. I., Ewels, C. P., Martsinovich, N., Scarle, S., Jones, R., Goss, J. P., Hourahine, B. and Briddon, P. R., Glide dislocations in diamond: first-principles calculations of similarities with and differences from silicon and the effects of hydrogen, J. Phys. Cond. Matt., 14, (2002), 1268912696;
Goss, J. P., Briddon, P. R., Sque, S. J. and Jones, R., Boron-hydrogen complexes in diamond, Phys. Rev. B., 69 (2004), 165215165223.
[42]Mehandru, S. P., Anderson, A. B. and Angus, J. C., Hydrogen binding and diffusion in diamond, J. Mater. Res., 7 (1992), 689695.
[43]Chu, C. H. and Estreicher, S. K., Similarities, differences, and trends in the properties of interstitial H in cubic C, Si, BN, BP, AlP, and SiC, Phys. Rev. B., 42 (1990), 94869495.
[44]Conway, N. M. J., Ilie, A., Robertson, J., Milne, W. I. and Tagliaferro, A., Reduction in defect density by annealing in hydrogenated tetrahedral amorphous carbon, Appl. Phys. Lett., 73 (1998), 24562459.
[45]von Keudell, A., Meier, M. and Hopf, C., Growth mechanism of amorphous hydrogenated carbon, Diam. Relat. Mater., 11 (2002), 969975.
[46]Talbot-Ponsonby, D. F., Newton, M. E., Baker, J. M., Scarsbrook, G. A., Sussmann, R. S., Whitehead, A. J. and Pfenninge, S., Multifrequency EPR, 1H ENDOR, and saturation recovery of paramagnetic defects in diamond films grown by chemical vapor deposition, Phys. Rev. B., 57 (1998), 22642270.

Keywords

Related content

Powered by UNSILO

Computational Study of Interstitial Hydrogen Atoms in Nano-Diamond Grains Embedded in an Amorphous Carbon Shell

  • Amihai Silverman (a1), Alon Hoffman (a2) and Joan Adler (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.