Skip to main content Accessibility help
×
Home

Asymptotic-Preserving Scheme for the M1-Maxwell System in the Quasi-Neutral Regime

  • S. Guisset (a1) (a2), S. Brull (a1), B. Dubroca (a2), E. d'Humières (a2), S. Karpov (a3) and I. Potapenko (a3)...

Abstract

This work deals with the numerical resolution of the M1-Maxwell system in the quasi-neutral regime. In this regime the stiffness of the stability constraints of classical schemes causes huge calculation times. That is why we introduce a new stable numerical scheme consistent with the transitional and limit models. Such schemes are called Asymptotic-Preserving (AP) schemes in literature. This new scheme is able to handle the quasi-neutrality limit regime without any restrictions on time and space steps. This approach can be easily applied to angular moment models by using a moments extraction. Finally, two physically relevant numerical test cases are presented for the Asymptotic-Preserving scheme in different regimes. The first one corresponds to a regime where electromagnetic effects are predominant. The second one on the contrary shows the efficiency of the Asymptotic-Preserving scheme in the quasi-neutral regime. In the latter case the illustrative simulations are compared with kinetic and hydrodynamic numerical results.

Copyright

Corresponding author

*Corresponding author. Email address:guisset@celia.u-bordeaux1.fr (S. Guisset)

References

Hide All
[1]Batishchev, O.V, Yu Bychenkov, V., Detering, F., Rozmus, W., Sydera, R., Copjack, C.E, and Novikov, V.N.. Heat transport and electron distribution function in laser produced with hot spots. Physics of Plasmas 9 23022310., 2002.
[2]Bobylev, A.V and Potapenko, I.F. Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas. J. Comp. Phys., 246, 123144, 2013.
[3]Braginskii, S.I.. Reviews of plasmaphysics. Consultant Bureau, New York, vol. 1, 1965.
[4]Brantov, A.V, Yu Bychenkov, V., Batishchev, O.V., and Rozmus, W.. Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses. Computer Physics communications 164 6772, 2004.
[5]Brull, S., Degond, P., and Deluzet, F.. Degenerate anisotropic elliptic problems and magnetised plasma simulations. Commun. Comput. Phys. 11 pp147178, 2012.
[6]Brull, S., Degond, P., Deluzet, F., and Mouton, A.. An asymptotic preserving scheme for a bi-fluid Euler-Lorentz system, Kinet. Rel. Models. Vol. 4, No. 4, 2011.
[7]Brull, S., Deluzet, F., and Mouton, A.. Numerical resolution of an anisotropic non linear diffusion problem. Commun. in Math. Sci., vol 13, No 1, pp 203224, 2015.
[8]Buet, C. and Cordier, S.. Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation. J. Comput. Phys. 145, No.1, 228245 (1998).
[9]Chen, F.. Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York, 1984.
[10]Crispel, P., Degond, P., and Vignal, M.-H.. A plasma expansion model based on the full Euler-Poisson system. Math. Models Methods Appl. Sci. 17 11291158, 2007.
[11]Crispel, P., Degond, P., and Vignal, M.-H.. An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field. Math. Models Methods Appl. Sci. 17 11291158, 2007.
[12]Crispel, P., Degond, P., and Vignal, M.-H.. An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasi-neutral limit. J. Comput. Phys. 223 (2007) 208234, 2007.
[13]Crouseilles, N., Lemou, M., and Méhats, F.. Asymptotic Preserving schemes for highly oscillatory Vlasov Poisson equations. J. Comp. Phys., Volume 248, Pages 287308, 1 September 2013.
[14]Degond, P., Deluzet, F., Navoret, L., Sun, A., and Vignal, M.H.. Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality. J. Comput. Phys, 229 no 16, 56305652, 2010.
[15]Degond, P., Deluzet, F., Sangam, A., and Vignal, M.-H.. An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field. J. Comput. Phys. Volume 228, Issue 1, 2009.
[16]Degond, P., Deluzet, F., and Savelief, D.. Numerical approximation of the Euler-Maxwell model in the quasineutral limit. Journal of Computational Physics, 231, pp. 19171946, 2012.
[17]Degond, P., Liu, H., Savelief, D., and Vignal, M-H.. Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit. C. R. Acad. Sci. Paris, Ser. I 341 323328, 2005.
[18]Degond, P., Lozinski, A., Narski, J., and Negulescu, C.. An Asymptotic-Preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition. J. Comp. Phys., 231 (2012), pp. 27242740.
[19]Drake, J.F., Kaw, P.K., Lee, Y.C., Schmidt, G., Liu, C.S., and Rosenbluth, M.N.. Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778, 1974.
[20]Dubroca, B., Feugeas, J.-L., and Frank, M.. Angular moment model for the Fokker-Planck equation. The European Phys. Journal D, Volume 60, Issue 2, pp 301307, November 2010.
[21]Dubroca, B. and Feugeas, J.L.. Étude théorique et numérique d'une hiéarchie de modèles aux moments pour le transfert radiatif. C. R. Acad. Sci. Paris, t. 329, SCrie I, p. 915920, 1999.
[22]Duclous, R., Dubroca, B., Filbet, F., and Tikhonchuk, V.. High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications. J. Comput. Phys. 228(14): 50725100 (2009).
[23]Filbet, F. and Jin, S.. A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources. J. Comp. Phys. vol. 229, no 20 (2010).
[24]Hauck, C. and McLarren, R.. Positive PN closures. Siam J. Sci. Comp. Vol. 32, No. 5, pp. 26032626.
[25]Jin, S.. Efficient Asymptotic-Preserving (AP) schemes for some multi-scale kinetic equations. SIAM J. Sci. Comp. 21 441, 1999.
[26]Jin, S. and Yan, B.. A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation. J. Comp. Phys. 230, 64206437, 2011.
[27]Lemou, M. and Mieussens, L.. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit. SIAM J. Sci. Comput., 31(1), 334368, 2008.
[28]Levermore, D.. Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1996.
[29]Mallet, J., Brull, S., and Dubroca, B.. An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons. Communi. Comput. Phys., Vol.15, No. 2, pp. 422450, 2013.
[30]Mallet, J., Brull, S., and Dubroca, B.. General moment system for plasma physics based on minimum entropy principle. Submitted.
[31]Marocchino, A., Tzoufras, M., Atzeni, S., Schiavi, A., Nicola, Ph. D., Mallet, J., Tikhonchuk, V., and Feugeas, J.-L.. Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses. Phys. Plasmas 20, 022702, 2013.
[32]Minerbo, G.N.. Maximum entropy Eddigton Factors. J. Quant. Spectrosc. Radiat. Transfer, 20, 541, 1978, 1978.
[33]Schurtz, G.P., Nicolai, Ph.D., and Busquet, M.. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Physics of Plasmas, 7, 4238, 2000.
[34]Spitzer, L. and Haarm, R.. Transport Phenomena in a Completely Ionized Gas. Phys. Rev. 89, 977, 1953.

Keywords

MSC classification

Asymptotic-Preserving Scheme for the M1-Maxwell System in the Quasi-Neutral Regime

  • S. Guisset (a1) (a2), S. Brull (a1), B. Dubroca (a2), E. d'Humières (a2), S. Karpov (a3) and I. Potapenko (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed