Skip to main content Accessibility help
×
Home

Additive Schwarz Preconditioners with Minimal Overlap for Triangular Spectral Elements

  • Yuen-Yick Kwan (a1)

Abstract

The additive Schwarz preconditioner with minimal overlap is extended to triangular spectral elements (TSEM). The method is a generalization of the corresponding method in tensorial quadrilateral spectral elements (QSEM). The proposed preconditioners are based on partitioning the domain into overlapping subdomains, solving local problems on these subdomains and solving an additional coarse problem associated with the subdomain mesh. The results of numerical experiments show that the proposed preconditioner are robust with respect to the number of elements and are more efficient than the preconditioners with generous overlaps.

Copyright

Corresponding author

*Corresponding author.Email:tkwan@tulane.edu

References

Hide All
[1]Blyth, M. G. and Pozrikids, C., A Lobatto interpolation grid over the triangle, IMA J. Appl. Math., 71(1) (2006), 153169.
[2]Bos, L., Bounding the Lebesgue function for Lagrange interpolation in a simplex, J. Approx. Theory, 38 (1983), 4359.
[3]Bos, L., Taylor, M. A. and Wingate, B. A., Tensor product Gauss-Lobatto points are Fekete points for the cube, Math. Comput., 70 (2001), 15431547.
[4]Brenner, S. C., The condition number of the Schur complement in domain decomposition, Numer. Math., 83(2) (1999), 187203.
[5]Brenner, S. C. and Sung, L.-Y., BDDC and FETI-DP without matrices or vectors, Comput. Methods Appl. Mech. Eng., 196(8) (2007), 14291435.
[6]Cai, X.-C. and Sarkis, M., A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21(2) (1999), 792797.
[7]Casarin, M. A., Quasi-optimal Schwarz methods for the conforming spectral element discretization, SIAM J. Numer. Anal., 34(6) (1997), 24822502.
[8]Dohrmann, C. R., A preconditioner for substructuring based on constrained energy minimization, SIAM J. Sci. Comput., 25(1) (2003), 246258.
[9]Dryja, M. and Widlund, O. B., An additive variant of the Schwarz alternating method in the case of many subregions, Technical Report 339, Department of Computer Science, Courant Institute, 1987.
[10]Dryja, M. and Widlund, O. B., Towards a unified theory of domain decomposition algorithms for elliptic problems, in Chan, T. F., Glowinski, R., Periaux, J. and Widlund, O. B., editors, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 321, Society for Industrial and Applied Mathematics, 1989.
[11]Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6(4) (1991), 345390.
[12]Farhat, C., Lesoinne, M., Le Tallec, P., Pierson, K. and Rixen, D., FETI-DP: a dual-primal unified FETI method-part I: a faster alternative to the two-level FETI method, Int. J. Numer. Meth. Eng., 50(7), 15231544.
[13]Farhat, C. and Roux, F.-X., A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Meth. Eng., 32(6), 12051227.
[14]Gander, M. J., Optimized Schwarz methods, SIAM J. Numer. Anal., 44(2) (2006), 699731.
[15]Kirby, K. C., Algorithm 839: FIAT, a new paradigm for computing finite element basis functions, ACM Trans. Math. Software, 30(4) (2004), 502516.
[16]Klawonn, A., Pavarino, L. F. and Rheinbach, O., Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains, Comput. Methods Appl. Mech. Eng., 198 (2008), 511523.
[17]Li, J. and Widlund, O. B., FETI-DP, BDDC and block Cholesky methods, Int. J. Numer. Meth. Eng., 66 (2006), 250271.
[18]Lions, P. L., On the Schwarz method I, in Glowinski, R., Golub, G. H., Meurant, G. A. and Periaux, J., editors, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 142, Society for Industrial and Applied Mathematics, 1988.
[19]Lottes, J. W. and Fischer, P. F., Hybrid multigrid/Schwarz algorithms for the spectral element method, J. Sci. Comput., 24(1) (2005), 4578.
[20]Mandel, J., Balancing domain decomposition, Commun. Numer. Methods Eng., 9(3) (1993), 233241.
[21]Mandel, J., Dohrmann, C. R. and Tezaur, R., An algebraic theory for primal and dual substructuring methods by constraints, Appl. Numer. Math., 54(2) (2005), 167193.
[22]Nataf, F., Rogier, F. and de Sturler, E., Optimal interface conditions for domain decomposition methods, Technical Report 301, CMAP, Ecole Polytechnique, 1994.
[23]Pavarino, L. F., Zampieri, E., Pasquetti, R. and Rapetti, F., Overlapping Schwarz methods for Fekete and Gauss-Lobatto spectral elements, SIAM J. Sci. Comput., 29(3) (2007), 10731092.
[24]Quarteroni, A. and Valli, A., Domain Decomposition Methods for Partial Differential Equations, New York: Oxford University Press, 1999.
[25]Roth, M. J., Nodal Configurations and Voronoi Tessellations for Triangular Spectral Elements, Ph.D. thesis, University of Victoria, Victoria, BC, Canada, 2005.
[26]Schöberl, J., Melenk, J. M., Pechstein, C. and Zaglmayr, S., Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements, IMA J. Appl. Numer. Anal., 28(1) (2008), 124.
[27]Taylor, M. A., Wingate, B. A. and Vincent, R. E., An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal., 38(5) (2000), 17071720.
[28]Toselli, A. and Widlund, O., Domain decomposition methods-algorithms and theory, volume 34 of Springer Series in Computational Mathematics, Germany: Springer-Verlag, 2005.
[29]Tu, X., Three-level BDDC in two dimensions, Int. J. Numer. Methods Eng., 69(1) (2007), 3359.

Keywords

Related content

Powered by UNSILO

Additive Schwarz Preconditioners with Minimal Overlap for Triangular Spectral Elements

  • Yuen-Yick Kwan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.