Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.239 Render date: 2021-03-07T10:18:34.701Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Numerical Analysis of Inverse Elasticity Problemwith Signorini's Condition

Published online by Cambridge University Press:  05 October 2016

Cong Zheng
Affiliation:
School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, P.R. China
Xiaoliang Cheng
Affiliation:
School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, P.R. China
Kewei Liang
Affiliation:
School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, P.R. China
Get access

Abstract

An optimal control problem is considered to find a stable surface traction, which minimizes the discrepancy between a given displacement field and its estimation. Firstly, the inverse elastic problem is constructed by variational inequalities, and a stable approximation of surface traction is obtained with Tikhonov regularization. Then a finite element discretization of the inverse elastic problem is analyzed. Moreover, the error estimation of the numerical solutions is deduced. Finally, a numerical algorithm is detailed and three examples in two-dimensional case illustrate the efficiency of the algorithm.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Atkinson, K. and Han, W., Theoretical Numerical Analysis: A Functional Analysis Framework 3rd edn, Springer, New York, 2009.Google Scholar
[2] Beck, J.V., Blackwell, B. and Clair, C.R.St., Inverse Heat Conduction: Ill-Posed Problems, Wiley-Interscience, New York, 1985.Google Scholar
[3] Bermudez, A. and Saguez, C., Optimal control of a Signorini problem, SIAM Journal on Control and Optimization, 25(1987), 576582.CrossRefGoogle Scholar
[4] Busby, H.R. and Trujillo, D.M., Numerical solution to a two-dimensional inverse heat conduction problem, Int. J. Numer. Meth. Eng. 21(1985), 349359.CrossRefGoogle Scholar
[5] Chiou, W., Chen, C. and Lu, W., The Inverse Numerical Solutions of the Nonlinear Heat Transfer Problem in Electrical Discharge Machining, Numerical Heat Transfer, Part A: Applications 59(2011), 247266.CrossRefGoogle Scholar
[6] Eck, C., Jarušek, J. and Krbeč, M., Unilateral Contact Problems: Variational Methods and Existence Theorems, Chapman/CRC Press, New York, 2005.CrossRefGoogle Scholar
[7] Glashoff, K. and Gustafson, S.A., Linear Optimization and Approximation: An Introduction to the Theoretical Analysis and Numerical Treatment of Semi-infinite Programs, Springer, New York, 1983.CrossRefGoogle Scholar
[8] Grysa, K., Cialkowksi, M.J. and Kaminski, H., An inverse temperature field problem of the theory of thermal stresses, Nucl. Eng. Des. 64(1981), 169184.CrossRefGoogle Scholar
[9] Han, W., A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations, Springer, New York, 2005.Google Scholar
[10] Han, W. and Sofonea, M., Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, American Mathematical Society–International Press, 2002.CrossRefGoogle Scholar
[11] Huang, C. and Shih, W., An inverse problem in estimating interfacial cracks in bimaterials by boundary element technique, Int. J. Numer. Meth. Eng. 45(1999), 15471567.3.0.CO;2-5>CrossRefGoogle Scholar
[12] Isakov, V., Inverse Problems for Partial Differential Equations 2nd edn, Springer, New York, 2006.Google Scholar
[13] Kaipio, J. and Somersalo, E., Statistical and Computational Inverse Problems, Springer, NewYork, 2005.Google Scholar
[14] Kikuchi, N. and Oden, J.T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, PA: SIAM, Philadelphia, 1998.Google Scholar
[15] Maniatty, A., Zabaras, N. and Stelson, K., Finite element analysis of some inverse elasticity problems, J. Eng. Mech. Diu. ASCE 115(1989), 13021316.Google Scholar
[16] Maniatty, A. and Zabaras, N., A method for solving inverse elastoviscoplastic problems, J. Eng. Mech. Dio. ASCE 115(1989), 22162231.CrossRefGoogle Scholar
[17] Mura, T., A new NDT: Evaluation of plastic strains in bulk from displacements on surfaces, Mech. Res. Commun. 12(1985), 243248.CrossRefGoogle Scholar
[18] Mura, T., Cox, B. and Gao, Z., Computer-aided nondestructive measurements of plastic strains from surface displacements, Computational Mechanics’86, Vol.I, Springer-Verlag, New York, 1986.Google Scholar
[19] Samarskii, A.A. and Vabishchevich, P.N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin, 2007.CrossRefGoogle Scholar
[20] Schnur, D.S. and Zabaras, N., Finite element solution of two-dimensional inverse elastic problems using spatial smoothing, Int. J. Numer. Meth. Eng. 30(1990), 5775.CrossRefGoogle Scholar
[21] Shillor, M., Sofonea, M. and Telega, J., Models and Variational Analysis of Quasistatic Contact, Springer, Berlin, 2004.CrossRefGoogle Scholar
[22] Sofonea, M. and Matei, A., Mathematical Models in Contact Mechanics, Cambridge University Press, Cambridge, 2012.CrossRefGoogle Scholar
[23] Tichonov, A. and Arsenin, V., Solution of ill-Posed Problems, John Wiley, New York, 1977.Google Scholar
[24] Wang, F., Han, W. and Cheng, X., Discontinuous Galerkin methods for solving Signorini problem, IMA J. Numer. Anal. 31(2011), 17541772.CrossRefGoogle Scholar
[25] Zeidler, E., Nonlinear Functional Analysis and Its Applications III. Variational Methods and Optimizations, Springer-Verlag, New York, 1985.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 38 *
View data table for this chart

* Views captured on Cambridge Core between 05th October 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Numerical Analysis of Inverse Elasticity Problemwith Signorini's Condition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Numerical Analysis of Inverse Elasticity Problemwith Signorini's Condition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Numerical Analysis of Inverse Elasticity Problemwith Signorini's Condition
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *