Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-m4xc2 Total loading time: 0.24 Render date: 2021-04-21T13:52:00.769Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Geometric Numerical Integration for Peakon b-Family Equations

Published online by Cambridge University Press:  15 January 2016

Wenjun Cai
Affiliation:
Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049, China Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University Nanjing 210023, China
Yajuan Sun
Affiliation:
LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
Yushun Wang
Affiliation:
Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University Nanjing 210023, China
Get access

Abstract

In this paper, we study the Camassa-Holm equation and the Degasperis-Procesi equation. The two equations are in the family of integrable peakon equations, and both have very rich geometric properties. Based on these geometric structures, we construct the geometric numerical integrators for simulating their soliton solutions. The Camassa-Holm equation and the Degasperis-Procesi equation have many common properties, however they also have the significant difference, for example there exist the shock wave solutions for the Degasperis-Procesi equation. By using the symplectic Fourier pseudo-spectral integrator, we simulate the peakon solutions of the two equations. To illustrate the smooth solitons and shock wave solutions of the DP equation, we use the splitting technique and combine the composition methods. In the numerical experiments, comparisons of these two kinds of methods are presented in terms of accuracy, computational cost and invariants preservation.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Beals, R., Sattinger, D.H., and Szmigielski, J.. Multi-peakons and a theorem of Stieltjes. Inv. Prob., 15:L1L4, 1999.CrossRefGoogle Scholar
[2]Beals, R., Sattinger, D.H., and Szmigielski, J.. Multipeakons and the classical moment problem. Adv. Math., 154:229257, 2000.CrossRefGoogle Scholar
[3]Benjamin, T.B., Bona, J.L., and Mahony, J.. Model equations for long waves in nonlinear dispersive systems. Phil. R. Soc., 272:4778, 1972.CrossRefGoogle Scholar
[4]Bridges, T.J. and Reich, S.. Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations. Physica D, 152-153:491504, 2001.CrossRefGoogle Scholar
[5]Camassa, R. and Holm, D.D.. A integrable shallow water equation with peaked solutions. Phys. Rev. Lett., 71:16611664, 1993.CrossRefGoogle Scholar
[6]Camassa, R., Holm, D.D., and Hyman, J.M.. A new integrable shallow water equation. Adv. Appl. Mech., 31:133, 1994.CrossRefGoogle Scholar
[7]Chen, J.B. and Qin, M.Z.. Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Electon. Trans. Numer. Anal., 12:193204, 2001.Google Scholar
[8]Coclite, G.M., Karlsen, K., and Risebro, N.. Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation. IMA J. Numer. Anal., 28:80105, 2008.CrossRefGoogle Scholar
[9]Coclite, G.M. and Karlsen, K.H.. On the well-posedness of the Degasperis-Procesi equation. J. Funct. Anal., 233:6091, 2006.CrossRefGoogle Scholar
[10]Coclite, G.M. and Karlsen, K.H.. On the uniqueness of discontinuous solutions to the Degasperis-Procesi equation. J. Differ. Equations, 234:142160, 2007.CrossRefGoogle Scholar
[11]Cohen, D., Owren, B., and Raynaud, X.. Multi-symplectic integration of the Camassa-Holm equation. J. Comput. Phys., 227:54925512, 2008.CrossRefGoogle Scholar
[12]Constantin, A. and Lannes, D.. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equation. Arch. Ration. Mech. Anal., 192:165186, 2009.CrossRefGoogle Scholar
[13]Degasperis, A., Holm, D.D., and Hone, A.H.W.. A new integrable equation with peakon solutions. Theor. Math. Phys., 133:14631474, 2002.CrossRefGoogle Scholar
[14]Degasperis, A. and Procesi, M.. Asymptotic integrability In Symmetry and Perturbation Theory, pages 2237. World Scientific Publishing, 1999.Google Scholar
[15]Escher, J., Liu, Y., and Yin, Z.. Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct. Anal., 241:457485, 2006.CrossRefGoogle Scholar
[16]Feng, B. and Liu, Y.. An operator splitting method for the Degasperis-Procesi equation. J. Comput. Phys., 228:78057820, 2009.CrossRefGoogle Scholar
[17]Gottlieb, S. and Shu, C.-W.. Total variation diminishing Runge-Kutta schemes. Math. Comput., 67:7385, 1998.CrossRefGoogle Scholar
[18]Gottlieb, S., Shu, C.-W., and Tadmor, E.. Strong stability preserving high order time discretization methods. SIAM Rev., 43:89112, 2001.CrossRefGoogle Scholar
[19]Hairer, E., Lubich, C., and Wanner, G.. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag, Berlin, second edition, 2006.Google Scholar
[20]Hoel, H.. A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation. Electron. J. Differential Equations, 2007:122, 2007.Google Scholar
[21]Jiang, G. and Shu, C.-W.. Efficient implementation of Weighted ENO schemes. J. Comput. Phys., 126:202228, 1996.CrossRefGoogle Scholar
[22]Johnson, R.S.. Camassa-Holm, Korteweg-de Vries and related models for water. J. Fluid Mech., 455:6382, 2002.CrossRefGoogle Scholar
[23]Kalisch, H. and Lenells, J.. Numerical study of traveling-wave solutions for the Camassa-Holm equation. Chaos Soliton Fract., 25:287298, 2005.CrossRefGoogle Scholar
[24]Kalisch, H. and Raynaud, X.. Convergence of a spectral projection of the Camassa-Holm equation. Numer. Meth. Part. D. E., 22:11971215, 2006.CrossRefGoogle Scholar
[25]Liu, H., Huang, Y., and Yi, N.. A conservative discontinuous Galerkin method for the Degasperis-Procesi equation. Methods Appl. Anal., 21:83106, 2014.Google Scholar
[26]Liu, Y. and Yin, Z.. Global existence and blow-up phenomena for the Degasperis-Procesi equation. Comm. Math. Phys., 267:801820, 2006.CrossRefGoogle Scholar
[27]Lundmark, H.. Formation and dynamics of shock waves in the Degasperis-Procesi equation. J. Nonlinear. Sci, 17:169198, 2007.CrossRefGoogle Scholar
[28]Lundmark, H. and Szmigielski, J.. Degasperis-Procesi peakons and the discrete cubic string. Int. Math. Res. Pap., 2005:53116, 2003.CrossRefGoogle Scholar
[29]Lundmark, H. and Szmigielski, J.. Multi-peakon solutions of the Degasperis-Procesi equation. Inv. Prob., 19:12411245, 2003.CrossRefGoogle Scholar
[30]Matsuno, Y.. Multisoliton solutions of the Degasperis-Procesi equation. Inv. Prob., 21:20852101, 2005.CrossRefGoogle Scholar
[31]Matsuno, Y.. Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit. Inv. Prob., 21:15531570, 2005.CrossRefGoogle Scholar
[32]Miyatake, Y. and Matsuo, T.. Conservative finite difference schemes for the Degasperis-Procesi equation. J. Comput. Appl. Math., 236:37283740, 2012.CrossRefGoogle Scholar
[33]Olver, P.J.. On the Hamiltonian structure of evolution equations. Math. Proc. Camb. Phil. Soc. 88:7188, 1980.CrossRefGoogle Scholar
[34]Shen, J., Tang, T. and Wang, L.-L.. Spectral Methods: Algorithms, Analysis and Applications. Springer, 2011.CrossRefGoogle Scholar
[35]Shu, C.-W.. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pages 325432. Springer Berlin Heidelberg, 1998.CrossRefGoogle Scholar
[36]Shu, C.-W.. Total-Variation-Diminishing time discretizations. SIAM J. Sci. Stat. Comput., 9:10731084, 1998.CrossRefGoogle Scholar
[37]Shu, C.-W. and Osher, S.. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77:439471, 1998.CrossRefGoogle Scholar
[38]Sun, Y.J. and Qin, M.Z.. A multi-symplectic scheme for RLW equation. J. Comput. Math., 22:611621, 2004.Google Scholar
[39]Trefethen, L.N.. Spectral Methods in MATLAB. SIAM, Philadelphia, 2000.CrossRefGoogle Scholar
[40]Xia, Y.. Fourier spectral methods for Degasperis-Procesi equation with discontinuous solutions. J. Sci. Comput., 61:584603, 2014.CrossRefGoogle Scholar
[41]Xu, Y. and Shu, C.-W.. Local discontinuous Galerkin methods for the Degasperis-Procesi equation. Commun. Comput. Phys., 10:474508, 2011.CrossRefGoogle Scholar
[42]Yoshida, H.. Construction of higher order symplectic integrators. Phys. Lett. A, 150:262268, 1990.CrossRefGoogle Scholar
[43]Yoshida, H.. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A, 146:319323, 1990.Google Scholar
[44]Yu, C.H. and Sheu, Tony W.H.. A dispersively accurate compact finite difference method for the Degasperis-Procesi equation. J. Comput. Phys., 236:493512, 2013.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 41 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Geometric Numerical Integration for Peakon b-Family Equations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Geometric Numerical Integration for Peakon b-Family Equations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Geometric Numerical Integration for Peakon b-Family Equations
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *