Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-4ck9x Total loading time: 0.275 Render date: 2021-04-22T13:18:24.900Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Front Tracking Method for the Simulation of Compressible Multimedium Flows

Published online by Cambridge University Press:  15 January 2016

Haitian Lu
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China
Ning Zhao
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China
Donghong Wang
Affiliation:
College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China
Corresponding
Get access

Abstract

A front tracking method combined with the real ghost fluid method (RGFM) is proposed for simulations of fluid interfaces in two-dimensional compressible flows. In this paper the Riemann problem is constructed along the normal direction of interface and the corresponding Riemann solutions are used to track fluid interfaces. The interface boundary conditions are defined by the RGFM, and the fluid interfaces are explicitly tracked by several connected marker points. The Riemann solutions are also used directly to update the flow states on both sides of the interface in the RGFM. In order to validate the accuracy and capacity of the new method, extensive numerical tests including the bubble advection, the Sod tube, the shock-bubble interaction, the Richtmyer-Meshkov instability and the gas-water interface, are simulated by using the Euler equations. The computational results are also compared with earlier computational studies and it shows good agreements including the compressible gas-water system with large density differences.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125 (1996), 150160.CrossRefGoogle Scholar
[2]Brackbill, J. U., Kothe, D. B. and Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100 (1992), 335354.CrossRefGoogle Scholar
[3]Brouillette, M., The Richtmyer-Meshkov instability, Annu. Rev. Fluid Mech., 34 (2002), 445468.CrossRefGoogle Scholar
[4]Caiden, R., Fedkiw, R. P. and Anderson, C., A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys., 166 (2001), 127.CrossRefGoogle Scholar
[5]Cocchi, J.-P. and Saurel, R., A Riemann problem based method for the resolution of compressible multimaterial flows, J. Comput. Phys., 137 (1997), 265298.CrossRefGoogle Scholar
[6]Fedkiw, R. P., Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175 (2002), 200224.CrossRefGoogle Scholar
[7]Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152 (1999), 457492.CrossRefGoogle Scholar
[8]Glimm, J., Grove, J. W., Li, X. L., Shyue, K.-M, Zeng, Y. and Zhang, Q., Three-dimensional front tracking, SIAM J. Sci. Comput., 19 (1998), 703727.CrossRefGoogle Scholar
[9]Glimm, J., Grove, J. W., Li, X. L. and N., Zhao, Simple front tracking, Contemp. Math., 238 (1999), 133149.CrossRefGoogle Scholar
[10]Glimm, J.,Grove, J. W., Li, X. L., Oh, W. and Sharp, D. H., A critical analysis of Rayleigh-Taylor growth rates, J. Comput. Phys., 169 (2001), 652677.CrossRefGoogle Scholar
[11]Hao, Y. and Prosperetti, A., A numerical method for three-dimensional gas-liquid flow computations, J. Comput. Phys., 196 (2004), 126144.CrossRefGoogle Scholar
[12]Hass, J. F and Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181 (1987), 4176.CrossRefGoogle Scholar
[13]Jiang, G.-S. and Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202228.CrossRefGoogle Scholar
[14]Karin, S., Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. phys., 112 (1994), 3143.CrossRefGoogle Scholar
[15]Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows, J. Comput. Phys., 95 (1991), 5984.CrossRefGoogle Scholar
[16]Liu, T. G., Khoo, B. C. and Yeo, K. S., The simulation of compressible multi-medium flow. I. A new methodology with test applications to 1D gas-gas and gas-water cases, Comput. & Fluids, 30 (2001), 291314.CrossRefGoogle Scholar
[17]Liu, T. G., Khoo, B. C. and Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190 (2003), 651681.CrossRefGoogle Scholar
[18]Liu, T. G., Khoo, B. C. and Wang, C. W., The ghost fluid method for compressible gas-water simulation, J. Comput. Phys., 204 (2005), 193221.CrossRefGoogle Scholar
[19]Mulder, W., Osher, S. and Sethian, J. A., Computing interface motion in compressible gas dynamics, J. Comput. Phys, 100 (1992), 209228.CrossRefGoogle Scholar
[20]Nourgaliev, R. R., Dinh, T. N. and Theofanous, T. G., Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213 (2006), 500529.CrossRefGoogle Scholar
[21]Osher, S. and Fedkiw, R. P., Level set methods: An overview and some recent results, J. Comput. Phys., 169 (2001), 463502.CrossRefGoogle Scholar
[22]Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), 220252.CrossRefGoogle Scholar
[23]Quirk, J. J. and Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318 (1996), 129163.CrossRefGoogle Scholar
[24]Shu, C.-W. and Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77 (1988), 439471.CrossRefGoogle Scholar
[25]Shui, L., Eijkel, J.C.T. and van den Berg, A., Multiphase flow in microfluidic systems-Control and applications of droplets and interfaces, Adv. Colloid Interface Sci., 133 (2007), 3549.CrossRefGoogle ScholarPubMed
[26]Shyue, K.-M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142 (1998), 208242.CrossRefGoogle Scholar
[27]Terashima, H. and Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228 (2009), 40124037.CrossRefGoogle Scholar
[28]Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. and Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169 (2001), 708759.CrossRefGoogle Scholar
[29]Unverdi, S. O. and Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100 (1992), 2537.CrossRefGoogle Scholar
[30]Wang, C. W., Liu, T. G. and Khoo, B. C., A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28 (2006), 278302.CrossRefGoogle Scholar
[31]Wang, C. W., Tang, H. Z. and Liu, T. G., An adaptive ghost fluid finite volume method for compressible gas-water simulations, J. Comput. Phys., 227 (2008), 63856409.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 90 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Front Tracking Method for the Simulation of Compressible Multimedium Flows
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Front Tracking Method for the Simulation of Compressible Multimedium Flows
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Front Tracking Method for the Simulation of Compressible Multimedium Flows
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *