Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-67gxp Total loading time: 0.28 Render date: 2021-03-07T09:50:25.498Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Estimation of Impacts of Removing Arbitrarily Constrained Domain Details to the Analysis of Incompressible Fluid Flows

Published online by Cambridge University Press:  05 October 2016

Kai Zhang
Affiliation:
Department of Mathematics, Jilin University, Changchun, P.R. China
Ming Li
Affiliation:
State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou, P.R. China
Jingzhi Li
Affiliation:
Department of Mathematics, Southern University of Science and Technology, Shenzhen, P.R. China
Corresponding
Get access

Abstract

Removing geometric details from the computational domain can significantly reduce the complexity of downstream task of meshing and simulation computation, and increase their stability. Proper estimation of the sensitivity analysis error induced by removing such domain details, called defeaturing errors, can ensure that the sensitivity analysis fidelity can still be met after simplification. In this paper, estimation of impacts of removing arbitrarily constrained domain details to the analysis of incompressible fluid flows is studied with applications to fast analysis of incompressible fluid flows in complex environments. The derived error estimator is applicable to geometric details constrained by either Dirichlet or Neumann boundary conditions, and has no special requirements on the outer boundary conditions. Extensive numerical examples were presented to demonstrate the effectiveness and efficiency of the proposed error estimator.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Amstutz, S.. The topological asymptotic for the Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, 11(3):401425, 2005.CrossRefGoogle Scholar
[2] Amstutz, S.. Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic Analysis, 49(1-2):87108, 2006.Google Scholar
[3] Amstutz, S.. Topological sensitivity analysis for some nonlinear PDE systems. Journal de Mathématiques Pures et Appliquées, 85(4):540557, 2006.CrossRefGoogle Scholar
[4] Bazilevs, Y., Calo, V., Cottrell, J., Evans, J., Hughes, T., Lipton, S., Scott, M., and Sederberg, T.. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering, 199(5-8):229263, 2010.CrossRefGoogle Scholar
[5] Becker, A.. The Boundary Element Method. McGraw Hill: New York, 1992.Google Scholar
[6] Berenger, J.. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2):185200, 1994.CrossRefGoogle Scholar
[7] Bettess, P.. Infinite Elements. Penshaw Press: Sunderfand, U.K., 1992.Google Scholar
[8] Cao, Y., Zhang, R., and Zhang, K.. Finite element method and discontinuous Galerkin method for Stochastic scattering problem of Helmholtz type in Rd . Potential Analysis, 28(4):301319, 2008.CrossRefGoogle Scholar
[9] Faria, J., Novotny, A., Feijoo, R., Taroco, E., and Padra, C.. Second order topological sensitivity analysis. International Journal of Solids and Structures, 44(14-15):49584977, 2007.CrossRefGoogle Scholar
[10] Ferrandes, R., Marin, P., Leon, J., and Giannini, F.. A posteriori evaluation of simplification details for finite element model preparation. Computers & Structures, 87(1-2):7380, 2009.CrossRefGoogle Scholar
[11] Galdi, G.. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Volume I, II. Springer-Verlag, 1994.Google Scholar
[12] Gao, H.Y., Wang, Z.J., and Huynh, H.T.. Differential formulation of discontinuous Galerkin and related methods for the Navier-Stokes equations. Communications in Computational Physics, 13(4):10131044, 2013.CrossRefGoogle Scholar
[13] Giles, M. and Suli, E.. Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality. Acta Numerica, 11:145236, 2002.CrossRefGoogle Scholar
[14] Gopalakrishnan, S. and Suresh, K.. A formal theory for estimating defeaturing-induced engineering analysis errors. Computer-Aided Design, 39(1):6068, 2007.CrossRefGoogle Scholar
[15] Gratsch, T. and Bathe, K.. A posteriori error estimation techniques in practical finite element analysis. Computers & Structures, 83(4-5):235265, 2005.CrossRefGoogle Scholar
[16] Guillaume, P. and Idris, K.S.. Topological sensitivity and shape optimization for the stokes equations. Rapport MIP, No 01-24, 2001.Google Scholar
[17] Keller, J.. Removing small features from computational domains. Journal of Computational Physics, 113(1):148150, 1994.CrossRefGoogle Scholar
[18] Kelly, D., De, J., Gago, S., Zienkiewicz, O., and Babuska, I.. A posteriori error analysis and adaptive processes in the finite element method: Part I: Error analysis. International Journal for Numerical Methods in Engineering, 19(11):15931619, 1983.CrossRefGoogle Scholar
[19] Kim, T.Y., Dolbow, J., and Fried, E.. A numerical method for a second-gradient theory of incompressible fluid flow. Journal of Computational Physics, 223(2):551570, 2007.CrossRefGoogle Scholar
[20] Li, M. and Gao, S.. Estimating defeaturing-induced engineering analysis error for arbitrary 3D features. Computer-Aided Design, 43(12):15871597, 2011.CrossRefGoogle Scholar
[21] Li, M., Gao, S., and Martin, R.. Estimating effects of removing negative features on engineering analysis. Computer-Aided Design, 43(1):14021412, 2011.CrossRefGoogle Scholar
[22] Li, M., Gao, S., and Martin, R.. Engineering analysis error estimation when removing finite-sized features in nonlinear elliptic problems. Computer-Aided Design, 45(2):361372, 2013.CrossRefGoogle Scholar
[23] Li, M., Gao, S., and Zhang, K.. Goal-oriented error estimator for the analysis of simplified designs. Computer Methods in Applied Mechanics and Engineering, 255:89103, 2013.CrossRefGoogle Scholar
[24] Novotny, A., Feijoo, R., Taroco, E., and Padra, C.. Topological-shape sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, 192(7):803829, 2003.CrossRefGoogle Scholar
[25] Oden, J. and Prudhomme, S.. Estimation of modeling error in computational mechanics. Journal of Computational Physics, 182(2):496515, 2002.CrossRefGoogle Scholar
[26] Parussini, L. and Lucia, P.. Fictitious domain approach with hp-finite element approximation for incompressible fluid flow. Journal of Computational Physics, 228(10):38913910, 2009.CrossRefGoogle Scholar
[27] Prudhomme, S., Oden, J., Westermann, T., Bass, J., and Botkin, M.. Practical methods for a posteriori error estimation in engineering applications. International Journal for Numerical Methods in Engineering, 56(8):11931224, 2003.CrossRefGoogle Scholar
[28] Saad, Y.. Iterative Methods for Sparse Linear Systems. Halstead Press, 2003.CrossRefGoogle Scholar
[29] Shetty, A.D., Shen, J., Chandy, A.J., and Frankel, S.H.. A pressure-correction scheme for rotational Navier-Stokes equations and its application to rotating turbulent flows. Communications in Computational Physics, 9(3):740755, 2011.CrossRefGoogle Scholar
[30] Sumner, D.. Two circular cylinders in cross-flow: A review. Journal of Fluids and Structures, 26(6):849899, 2010.CrossRefGoogle Scholar
[31] Tachim Medjo, T., Temam, R., and Ziane, M.. Optimal and robust control of fluid flows: Some theoretical and computational aspects. Applied Mechanics Reviews, 61(1):010802:123, 2008.Google Scholar
[32] Temam, R.. Navier-Stokes Equations. Elsevier, 1984.Google Scholar
[33] Tokyay, T., Constantinescu, G., Gonzalez-Juez, E., and Meiburg, E.. Gravity currents propagating over periodic arrays of blunt obstacles: Effect of the obstacle size. Journal of Fluids and Structures, 27(5-6):798806, 2011.CrossRefGoogle Scholar
[34] Turevsky, I., Gopalakrishnan, S., and Suresh, K.. Defeaturing: A posteriori error analysis via feature sensitivity. International Journal for Numerical Methods in Engineering, 76(9):13791401, 2008.CrossRefGoogle Scholar
[35] Turevsky, I., Gopalakrishnan, S., and Suresh, K.. An efficient numericalmethod for computing the topological sensitivity of arbitrary-shaped features in plate bending. International Journal for Numerical Methods in Engineering, 79(13):16831702, 2009.CrossRefGoogle Scholar
[36] White, D., Saigal, S., and Owen, S.. Meshing complexity of single part CAD models. In Proceedings of the 12th International Meshing Roundtable Conference, Santa Fe, New Mexico, U.S.A., 2003.Google Scholar
[37] Yoon, D., Yang, K., and Choi, C.. Flow past a square cylinder with an angle of incidence. Physics of Fluids, 22(4):112, 2010.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 39 *
View data table for this chart

* Views captured on Cambridge Core between 05th October 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Estimation of Impacts of Removing Arbitrarily Constrained Domain Details to the Analysis of Incompressible Fluid Flows
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Estimation of Impacts of Removing Arbitrarily Constrained Domain Details to the Analysis of Incompressible Fluid Flows
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Estimation of Impacts of Removing Arbitrarily Constrained Domain Details to the Analysis of Incompressible Fluid Flows
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *