Skip to main content Accessibility help
×
Home

The Diffused Vortex Hydrodynamics Method

Published online by Cambridge University Press:  30 July 2015


Emanuele Rossi
Affiliation:
Department of Mathematics, University of Rome, Sapienza, Rome, 00185, Italy
Andrea Colagrossi
Affiliation:
CNR-INSEAN, Marine Technology Research Institute, Rome, 00128, Italy
Benjamin Bouscasse
Affiliation:
CNR-INSEAN, Marine Technology Research Institute, Rome, 00128, Italy
Giorgio Graziani
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Rome, Sapienza, Rome, 00185, Italy

Get access

Abstract

A new Particle Vortex Method, called Diffused Vortex Hydrodynamics (DVH), is presented in this paper. The DVH is a meshless method characterized by the use of a regular distribution of points close to a solid surface to perform the vorticity diffusion process in the boundary layer regions. This redistribution avoids excessive clustering or rarefaction of the vortex particles providing robustness and high accuracy to the method. The generation of the regular distribution of points is performed through a packing algorithm which is embedded in the solver. The packing algorithm collocates points regularly around body of arbitrary shape allowing an exact enforcement on the solid surfaces of the no-slip boundary condition. The present method is tested and validated on different problems of increasing complexities up to flows with Reynolds number equal to 100,000 (without using any subgrid-scale turbulence model).


Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Barba, L.A., Leonard, A., and Allen, C.B.. Advances in viscous vortex methods-meshless spatial adaption based on radial basis function interpolation. International Journal for Numerical Methods in Fluids, 47(5):387421, 2005.CrossRefGoogle Scholar
[2]Barba, L.A., Leonard, A., and Allen, C.B.. Numerical investigations on the accuracy of the vortex method with and without remeshing. In 16th AIAA Computational Fluid Dynamics Conference, June 2003.Google Scholar
[3]Benson, M.G., Bellamy-Knights, P.G, Gerrard, J.H., and Gladwell, I.. A viscous splitting algorithm applied to low reynolds number flows round a circular cylinder. Journal of Fluids and Structures, 3(5):439479, 1989.CrossRefGoogle Scholar
[4]Chorin, A.. Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 57(04):785796, 1973.CrossRefGoogle Scholar
[5]Chorin, A.. Vortex sheet approximation of boundary layers. Journal of Computational Physics, 27(3):428442, 1978.CrossRefGoogle Scholar
[6]Christiansen, I.P.. Numerical simulation of hydrodynamics by the method of point vortices. Journal of Computational Physics, 13(3):363379, 1973.CrossRefGoogle Scholar
[7]Colagrossi, A., Bouscasse, B., Antuono, M., and Marrone, S.. Particle packing algorithm for SPH schemes. Computer Physics Communications, 183(2):16411683, 2012.CrossRefGoogle Scholar
[8]Colagrossi, A., Graziani, G., and Pulvirenti, M.. Particles for fluids: SPH vs vortex methods. Journal of Mathematics and Mechanics of Complex Systems, 2(1):4570, 2014.CrossRefGoogle Scholar
[9]Cottet, G.-H. and Koumoutsakos, P.D.. Vortex Methods: Theory and Practice. Cambridge University Press, University Printing House, Shaftesbury Road, Cambridge, United Kingdom, 2008.Google Scholar
[10]Coutanceau, M. and Bouard, R.. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid Mechanics, 79(02):231256, 1977.CrossRefGoogle Scholar
[11]Edwards, E. and Bridson, R.. A high-order accurate particle-in-cell method. International Journal for Numerical Methods in Engineering, 90(9):10731088, 2012.Google Scholar
[12]Eldredge, J.D.. Efficient tools for the simulation of flapping wing flows. AIAA, 85(2005):111, 2005.Google Scholar
[13]Graziani, G. and Bassanini, P.. Unsteady viscous flows about bodies: Vorticity release and forces. Meccanica, 37(3):283303, 2002.CrossRefGoogle Scholar
[14]Graziani, G. and Landrini, M.. Application of multipoles expansion technique to two-dimensional nonlinear free-surface flows. Journal of Ship Research, 43(1):112, 1999.Google Scholar
[15]Graziani, G., Ranucci, M., and Piva, R.. From a boundary integral formulation to a vortex method for viscous flows. Computational Mechanics, 15(4):301314, 1995.CrossRefGoogle Scholar
[16]Hockney, R.W. and Eastwood, J.W.. Computer Simulation Using Particles. Adam Hilger, Bristol, 1988.CrossRefGoogle Scholar
[17]Huang, C.-J. and Huang, M.-J.. A vortex method suitable for long time simulations of flow over body of arbitrary geometry. Computers & Fluids, 74:112, 2013.Google Scholar
[18]Koumoutsakos, P. and Leonard, A.. High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. Journal of Fluid Mechanics, 296:138, 1995.Google Scholar
[19]Macià, F., Antuono, M., González, L.M., and Colagrossi, A.. Theoretical analysis of the no-slip boundary condition enforcement in SPH methods. Progress of Theoretical Physics, 125(6):10911121, 2011.CrossRefGoogle Scholar
[20]Marrone, S., Bouscasse, B., Colagrossi, A., and Antuono, M.. Study of ship wave breaking patterns using 3D parallel SPH simulations. Computers & Fluids, 69(0):5466, 2012.CrossRefGoogle Scholar
[21]Marrone, S., Colagrossi, A., Antuono, M., Colicchio, G., and Graziani, G.. An accurate SPH modeling of viscous flows around bodies at low and moderate reynolds numbers. Journal of Computational Physics, 245(0):456475, 2013.CrossRefGoogle Scholar
[22]Nair, M.T. and Sengupta, T.K.. Unsteady flow past elliptic cylinders. Journal of Fluids and Structures, 11(6):555595, 1997.CrossRefGoogle Scholar
[23]Riccardi, G. and Durante, D.. Elementi di Fluidodinamica. Springer, 2006.Google Scholar
[24]Rossi, E., Colagrossi, A., and Graziani, G.. Numerical simulation of 2D-vorticity dynamics using particle methods. Computers & Mathematics with Applications, 69(12):1484-1503, 2015.CrossRefGoogle Scholar
[25]Shadloo, M.S., Zainali, A., Yildiz, M., and Suleman, A.. A robust weakly compressible SPH method and its comparison with an incompressible SPH. International Journal for Numerical Methods in Engineering, 89(8):939956, 2012.CrossRefGoogle Scholar
[26]Singh, S.P. and Mittal, S.. Flow past a cylinder: Shear layer instability and drag crisis. International Journal for Numerical Methods in Fluids, 47(1):7598, 2005.CrossRefGoogle Scholar
[27]Dommelen, L. Van and Rundensteiner, E.A.. Fast, adaptive summation of point forces in the two-dimensional poisson equation. Journal of Computational Physics, 83(1):126147, 1989.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 107 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-kbvxn Total loading time: 0.255 Render date: 2020-12-04T19:21:10.949Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Dec 04 2020 19:00:10 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Diffused Vortex Hydrodynamics Method
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Diffused Vortex Hydrodynamics Method
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Diffused Vortex Hydrodynamics Method
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *