Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.491 Render date: 2021-02-27T00:15:45.046Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Conservative Semi-Lagrangian Finite Difference WENO Formulations with Applications to the Vlasov Equation

Published online by Cambridge University Press:  20 August 2015

Jing-Mei Qiu
Affiliation:
Department of Mathematical and Computer Science, Colorado School of Mines, Golden, CO 80401, USA
Chi-Wang Shu
Affiliation:
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
Corresponding
Get access

Abstract

In this paper, we propose a new conservative semi-Lagrangian (SL) finite difference (FD) WENO scheme for linear advection equations, which can serve as a base scheme for the Vlasov equation by Strang splitting [4]. The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume (FV) WENO scheme [3]. However, instead of inputting cell averages and approximate the integral form of the equation in a FV scheme, we input point values and approximate the differential form of equation in a FD spirit, yet retaining very high order (fifth order in our experiment) spatial accuracy. The advantage of using point values, rather than cell averages, is to avoid the second order spatial error, due to the shearing in velocity (v) and electrical field (E) over a cell when performing the Strang splitting to the Vlasov equation. As a result, the proposed scheme has very high spatial accuracy, compared with second order spatial accuracy for Strang split SL FV scheme for solving the Vlasov-Poisson (VP) system. We perform numerical experiments on linear advection, rigid body rotation problem; and on the Landau damping and two-stream instabilities by solving the VP system. For comparison, we also apply (1) the conservative SL FD WENO scheme, proposed in [22] for incompressible advection problem, (2) the conservative SL FD WENO scheme proposed in [21] and (3) the non-conservative version of the SL FD WENO scheme in [3] to the same test problems. The performances of different schemes are compared by the error table, solution resolution of sharp interface, and by tracking the conservation of physical norms, energies and entropies, which should be physically preserved.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Boyd, J. P., Chebyshev and Fourier Spectral Methods, Courier Dover Publications, 2001.Google Scholar
[2]Carlini, E., Ferretti, R., and Russo, G., A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 27(3) (2006), 1071–1091.Google Scholar
[3]Carrillo, J. A. and Vecil, F., Nonoscillatory interpolation methods applied to Vlasov-Based models, SIAM J. Sci. Comput., 29 (2007), 1179–1206.CrossRefGoogle Scholar
[4]Cheng, C. Z. and Knorr, G., The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22(3) (1976), 330–351.CrossRefGoogle Scholar
[5]Childs, P. N. and Morton, K. W., Characteristic Galerkin methods for scalar conservation laws in one dimension, SIAM J. Numer. Anal., 27(3) (1990), 553–594.CrossRefGoogle Scholar
[6]Cockburn, B., Johnson, C., Shu, C.-W., and Tadmor, E., Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Springer, New York, 1998.Google Scholar
[7]Colella, P. and Woodward, P. R., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54(1) (1984), 174–201.CrossRefGoogle Scholar
[8]Crouseilles, N., Latu, G., and Sonnendrucker, E., Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation, Int. J. Appl. Math. Comput. Sci., 17(3) (2007), 335–349.CrossRefGoogle Scholar
[9]Crouseilles, N., Mehrenberger, M., and Sonnendrucker, E., Conservative semi-Lagrangian schemes for Vlasov equations, J. Comput. Phys., 229(6) (2010), 1927–1953.CrossRefGoogle Scholar
[10]Filbet, F. and Sonnendrucker, E., Comparison of eulerian Vlasov solvers, Comput. Phys. Commun., 150(3) (2003), 247–266.CrossRefGoogle Scholar
[11]Filbet, F. and Sonnendrücker, E., Comparison of Eulerian Vlasov solvers, Comput. Phys. Commun., 150(3) (2003), 247–266.CrossRefGoogle Scholar
[12]Filbet, F., Sonnendrücker, E., and Bertrand, P., Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172(1) (2001), 166–187.CrossRefGoogle Scholar
[13]Filbet, F., Sonnendrucker, E., and Bertrand, P., Conservative numerical schemes for the Vlasov equation. J. Comput. Phys., 172(1) (2001), 166–187.CrossRefGoogle Scholar
[14]Gottlieb, S., Ketcheson, D. I., and Shu, C.-W., High order strong stability preserving time discretizations, J. Sci. Comput., 38(3) (2009), 251–289.CrossRefGoogle Scholar
[15]Huot, F., Ghizzo, A., Bertrand, P., Sonnendrucker, E., and Coulaud, O., Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system, J. Comput. Phys., 185(2) (2003), 512–531.CrossRefGoogle Scholar
[16]Jiang, G.-S. and Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126(1) (1996), 202–228.CrossRefGoogle Scholar
[17]Lee, T. and Lin, C. L., A characteristic Galerkin method for discrete Boltzmann equation, J. Comput. Phys., 171(1) (2001), 336–356.CrossRefGoogle Scholar
[18]LeVeque, R. J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., (1996), 627–665.Google Scholar
[19]Lin, S. J. and Rood, R. B., An explicit flux-form semi-Lagrangian shallow-water model on the sphere, Quart. J. Royal. Meteorologic. Soc., 123(544) (1997), 2477–2498.Google Scholar
[20]Liu, Y., Shu, C.-W., and M, Zhang, On the positivity of linear weights in WENO approximations, Acta. Math. Appl. Sin., 25 (2009), 503–538.CrossRefGoogle Scholar
[21]Qiu, J.-M. and Christlieb, A., A Conservative high order semi-Lagrangian WENO method for the Vlasov Equation, J. Comput. Phys., 229(4) (2010), 1130–1149.CrossRefGoogle Scholar
[22]Qiu, J.-M. and Shu, C.-W., Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow, J. Comput. Phys., 230 (2011), 863–889.CrossRefGoogle Scholar
[23]Qiu, J.-M. and Shu, C.-W., Convergence of Godunov-type schemes for scalar conservation laws under large time steps, SIAM J. Numer. Anal., 46 (2008), 2211–2237.CrossRefGoogle Scholar
[24]Qiu, J.-X. and Shu, C.-W., Finite difference WENO schemes with Lax-Wendroff-type time discretizations, SIAM J. Sci. Comput., 24(6) (2003), 2185–2200.CrossRefGoogle Scholar
[25]Sebastian, K. and Shu, C.-W., Multidomain WENO finite difference method with interpolation at subdomain interfaces, J. Sci. Comput., 19(1) (2003), 405–438.CrossRefGoogle Scholar
[26]Shu, C.-W., High order weighted essentially non-oscillatory schemes for convection dominated problems, SIAM Rev., 51 (2009), 82–126.CrossRefGoogle Scholar
[27]Sonnendruecker, E., Roche, J., Bertrand, P., and Ghizzo, A., The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149(2) (1999), 201–220.Google Scholar
[28]Takewaki, H., Nishiguchi, A., and Yabe, T., Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations, J. Comput. Phys., 61(2) (1985), 261–268.CrossRefGoogle Scholar
[29]Umeda, T., Ashour-Abdalla, M., and Schriver, D., Comparison of numerical interpolation schemes for one-dimensional electrostatic Vlasov code, J. Plasma. Phys., 72(06) (2006), 1057–1060.CrossRefGoogle Scholar
[30]Xiu, D. and Karniadakis, G. E., A semi-Lagrangian high-order method for Navier-Stokes equations, J. Comput. Phys., 172(2) (2001), 658–684.CrossRefGoogle Scholar
[31]Yabe, T., Xiao, F., and Utsumi, T., The constrained interpolation profile method for multiphase analysis, J. Comput. Phys., 169(2) (2001), 556–593.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 38 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Conservative Semi-Lagrangian Finite Difference WENO Formulations with Applications to the Vlasov Equation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Conservative Semi-Lagrangian Finite Difference WENO Formulations with Applications to the Vlasov Equation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Conservative Semi-Lagrangian Finite Difference WENO Formulations with Applications to the Vlasov Equation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *