Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-08T23:29:56.222Z Has data issue: false hasContentIssue false

Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates via the Nonuniform FFT

Published online by Cambridge University Press:  17 May 2016

Weizhu Bao*
Affiliation:
Department of Mathematics, National University of Singapore, Singapore 119076
Qinglin Tang*
Affiliation:
Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502 , Vandoeuvre-lès-Nancy, F-54506, France Inria Nancy Grand-Est/IECL-CORIDA, France Beijing Computational Science Research Center, No. 10 West Dongbeiwang Road, Beijing 100094, P.R. China
Yong Zhang*
Affiliation:
Université de Rennes 1, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex, France Wolfgang Pauli Institute c/o Fak. Mathematik, University Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
*
*Corresponding author. Email addresses:matbaowz@nus.edu.sg(W. Bao), tqltql2010@gmail.com (Q. Tang), yong.zhang@univ-rennes1.fr(Y. Zhang)
*Corresponding author. Email addresses:matbaowz@nus.edu.sg(W. Bao), tqltql2010@gmail.com (Q. Tang), yong.zhang@univ-rennes1.fr(Y. Zhang)
*Corresponding author. Email addresses:matbaowz@nus.edu.sg(W. Bao), tqltql2010@gmail.com (Q. Tang), yong.zhang@univ-rennes1.fr(Y. Zhang)
Get access

Abstract

We propose efficient and accurate numerical methods for computing the ground state and dynamics of the dipolar Bose-Einstein condensates utilising a newly developed dipole-dipole interaction (DDI) solver that is implemented with the non-uniform fast Fourier transform (NUFFT) algorithm. We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a DDI term and present the corresponding two-dimensional (2D) model under a strongly anisotropic confining potential. Different from existing methods, the NUFFT based DDI solver removes the singularity by adopting the spherical/polar coordinates in the Fourier space in 3D/2D, respectively, thus it can achieve spectral accuracy in space and simultaneously maintain high efficiency by making full use of FFT and NUFFT whenever it is necessary and/or needed. Then, we incorporate this solver into existing successful methods for computing the ground state and dynamics of GPE with a DDI for dipolar BEC. Extensive numerical comparisons with existing methods are carried out for computing the DDI, ground states and dynamics of the dipolar BEC. Numerical results show that our new methods outperform existing methods in terms of both accuracy and efficiency.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, Dover, 1965.Google Scholar
[2]Aikawa, K., Frisch, A., Mark, M., Baier, S., A., Rietzler, Grimm, R. and Ferlaino, F., Bose-Einstein condensation of Erbium, Phys. Rev. Lett., 108 (2012), 210401.CrossRefGoogle ScholarPubMed
[3]andersen, J. O., Theory of the weakly interacting Bose gas, Rev. Mod. Phys., 76 (2004), 599639.CrossRefGoogle Scholar
[4]Anderson, M. H., Ensher, J. R., Matthewa, M. R., Wieman, C. E. and Cornell, E. A., Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198201.CrossRefGoogle Scholar
[5]Antoine, X., Bao, W. and Besse, C., Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 26212633.CrossRefGoogle Scholar
[6]Bao, W., Ben Abdallah, N. and Cai, Y., Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement, SIAM J. Math. Anal., 44 (2012), 17131741.CrossRefGoogle Scholar
[7]Bao, W. and Cai, Y., Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1135.CrossRefGoogle Scholar
[8]Bao, W., Cai, Y. and Wang, H., Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229 (2010), 78747892.CrossRefGoogle Scholar
[9]Bao, W., Chern, I-L. and Lim, F., Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates, J. Comput. Phys., 219 (2006), 836854.CrossRefGoogle Scholar
[10]Bao, W. and Du, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 16741697.CrossRefGoogle Scholar
[11]Bao, W. and Jaksch, D., An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equation with a focusing nonlinearity, SIAM J. Numer. Anal., 41 (2003), 14061426.CrossRefGoogle Scholar
[12]Bao, W., Jaksch, D. and Markowich, P. A., Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys., 187 (2003), 318342.CrossRefGoogle Scholar
[13]Bao, W., Jaksch, D. and Markowich, P. A., Three dimensional simulation of jet formation in collapsing condensates, J. Phys. B: At. Mol. Opt. Phys., 37 (2004), 329343.CrossRefGoogle Scholar
[14]Bao, W., Marahrens, D., Tang, Q. and Zhang, Y., A simple and efficient numerical method for computing dynamics of rotating dipolar Bose-Einstein condensation via a rotating Lagrange coordinate, SIAM J. Sci. Comput., 35 (2013), A2671A2695.CrossRefGoogle Scholar
[15]Bao, W., Jian, H., Mauser, N. J. and Zhang, Y., Dimension reduction of the Schrödinger equation with Coulomb and anisotropic confining potentials, SIAM J. Appl. Math., 73 (6) (2013) 21002123.CrossRefGoogle Scholar
[16]Bao, W., Jiang, S., Tang, Q. and Zhang, Y., Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT, J. Comput. Phys., 296 (2015), 7289.CrossRefGoogle Scholar
[17]Baranov, M. A., Theoretical progress in many body physics of dipolar gases, Phys. Rep., 464 (2008), 71111.CrossRefGoogle Scholar
[18]Blakie, P. B., Ticknor, C., Bradley, A. S., Martin, A. M., Davis, M. J. and Kawaguchi, Y., Numerical method for evolving the dipolar projected Gross-Pitaevskii equation, Phys. Rev. E, 80 (2009), aritcle 016703.CrossRefGoogle ScholarPubMed
[19]Bloch, I., Dalibard, J. and Zwerger, W., Many body physics with ultracold gases, Rev. Mod. Phys., 80 (2008), 885965.CrossRefGoogle Scholar
[20]Bradley, C. C., Sackett, C. A., Tollett, J. J. and Hulet, R. G., Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction, Phys. Rev. Lett., 75 (1995), 16871690.CrossRefGoogle Scholar
[21]Cai, Y., Rosenkranz, M., Lei, Z. and Bao, W., Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions, Phys. Rev. A, 82 (2010), article 043623.CrossRefGoogle Scholar
[22]Carles, R., Markowich, P. A. and Sparber, C., On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008), 25692590.CrossRefGoogle Scholar
[23]Davis, K. B., Mewes, M. O., Andrews, M. R., Van druten, N. J., Durfee, D. S., Kurn, D. M. and Ketterle, W., Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett.,75 (1995), 39693973.CrossRefGoogle Scholar
[24]FETTER, A. L., Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys., 81 (2009), 647691.CrossRefGoogle Scholar
[25]Góral, K., Rzayewski, K. and Pfau, T., Bose-Einstein condensation with magnetic dipole-dipole forces, Phys. Rev. A, 61 (2000), article 051601(R).CrossRefGoogle Scholar
[26]Griesmaier, A., Werner, J., Hensler, S., Stuhler, J. and Pfau, T., Bose-Einstein condensation of Chromium, Phys. Rev. Lett., 94 (2005), article 160401.CrossRefGoogle ScholarPubMed
[27]Haken, H., Brewer, W. D. and Wolf, H. C., Molecular Physics and Elements of Quantum Chemistry, Springer, 1995.CrossRefGoogle Scholar
[28]Huang, Z., Markowich, P. A. and Sparber, C., Numerical simulation of trapped dipolar quantum gases: collapse studies and vortex dynamics, Kinet. Relat. Mod., 3 (2010), 181194.CrossRefGoogle Scholar
[29]Jiang, S., Greengard, L. and Bao, W., Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT, SIAM J. Sci. Comput., 36 (2014), B777B794.CrossRefGoogle Scholar
[30]Jiang, T. F. and Su, W. C., Ground state of the dipolar Bose-Einstein condensate, Phys. Rev. A, 74 (2006), article 063602.CrossRefGoogle Scholar
[31]Kawaguchi, Y. and Ueda, M., Spinor Bose-Einstein condensates, Phys. Rep., 520 (2012), 253381.CrossRefGoogle Scholar
[32]Kumar, R. K., Young-S., L.E., Vudragović, D., Balaz, A., Muruganandam, P. and Adhikari, S.K., Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap, Comput. Phys. Commun., 195 (2015), 117128.CrossRefGoogle Scholar
[33]Lahaye, T., Koch, T., Fröhlich, B., Fattori, M., Metz, J., Griesmaier, A., Gio-Vanazzi, S. and Pfau, T., Strong dipolar effects in a quantum ferrofluid, Nature, 448 (2007), 672675.CrossRefGoogle Scholar
[34]Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. and Pfau, T., The physics of dipolar bosonic quantum gases, Rep. Prog. Phys., 72 (2009), 126401.CrossRefGoogle Scholar
[35]Lahaye, T., Metz, J., Fröhlich, B., Koch, T., Meister, M., Griesmaier, A., Pfau, T., Saito, H., Kawaguchi, Y. and Ueda, M., D-wave collapse and explosion of a dipolar Bose-Einstein condensate, Phys. Rev. Lett., 101 (2008), article 080401.CrossRefGoogle ScholarPubMed
[36]Leggett, A. J., Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys., 73 (2001), 307356.CrossRefGoogle Scholar
[37]Levitt, M. H., Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley, 2008.Google Scholar
[38]Lu, M., Burdick, N. Q., Youn, S. H. and Lev, B. L., Strongly dipolar Bose-Einstein condensate of Dysprosium, Phys. Rev. Lett., 107 (2011), article 190401.CrossRefGoogle ScholarPubMed
[39]Mauser, N. J. and Zhang, Y., Exact artificial boundary condition for the Poisson equation in the simulation of the 2D Schrödinger-Poisson system, Commun. Comput. Phys., 16 (3) (2014), 764780.CrossRefGoogle Scholar
[40]Morsch, O. and Oberthaler, M., Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys., 78 (2006), 179215.CrossRefGoogle Scholar
[41]Ni, K.-K., Ospelkaus, S., de miranda, M. H. G., Pe'er, A., Neyenhuis, B., Zirbel, J. J., Kotochigova, S., Julienne, P. S., Jin, D. S. and Ye, J., A high phase-space-density gas of polar molecules, Science, 322 (2008), 231235.CrossRefGoogle ScholarPubMed
[42]O'dell, D. H. J., Giovanazzi, S. and Eberlein, C., Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate, Phys. Rev. Lett., 92 (2004), article 250401.Google ScholarPubMed
[43]Parker, N. G., Ticknor, C., Martin, A. M. and O'dell, D. H. J., Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate, Phys. Rev. A, 79 (2009), article 013617.CrossRefGoogle Scholar
[44]Pitaevskii, L. P. and Stringari, S., Bose-Einstein Condensation, Clarendon Press, Oxford, 2003.Google Scholar
[45]Pollack, S. E., Dries, D., Junker, M., Chen, Y. P., Corcovilos, T. A. and Hulet, R. G., Extreme tunability of interactions in a 7 Li Bose-Einstein condensate, Phys. Rev. Lett., 102 (2009), 090402.CrossRefGoogle Scholar
[46]Santos, L., Shlyapnikov, G., Zoller, P. and Lewenstein, M., Bose-Einstein condensation in trapped dipolar gases, Phys. Rev. Lett., 85 (2000), 17911797.CrossRefGoogle ScholarPubMed
[47]Shuman, E. S., Barry, J. F. and Demille, D., Laser cooling of a diatomic molecule, Nature, 467 (2010), 820823.CrossRefGoogle ScholarPubMed
[48]Ticknor, C., Parker, N.G., Melatos, A., Cornish, S.L., O'dell, D.H.J. and Martin, A.M., Collapse times of dipolar Bose-Einstein condensates, Phys. Rev. A, 78 (2008), article 061607.CrossRefGoogle Scholar
[49]Vengalattore, M., Leslie, S. R., Guzman, J. and Stamper-Kurn, D. M., Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate, Phys. Rev. Lett., 100 (2008), 170403.CrossRefGoogle Scholar
[50]Yi, S. and You, L., Trapped condensates of atoms with dipole interactions, Phys. Rev. A, 63 (2001), article 053607.CrossRefGoogle Scholar
[51]Zhang, Y. and Dong, X., On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system, J. Comput. Phys., 230 (2011), 26602676.CrossRefGoogle Scholar