Skip to main content Accessibility help

Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey properties

  • Frank Mousset (a1), Rajko Nenadov (a2) and Wojciech Samotij (a1)


For fixed graphs F1,…,Fr, we prove an upper bound on the threshold function for the property that G(n, p) → (F1,…,Fr). This establishes the 1-statement of a conjecture of Kohayakawa and Kreuter.


Corresponding author

*Corresponding author. Email:


Hide All

Research supported in part by the Israel Science Foundation (ISF) grants 1147/14 (FM and WS) and 1028/16 (FM) and ERC Starting Grant 633509 (FM).

A first draft of this paper was produced at the workshop of the research group of Angelika Steger in Buchboden in July 2018.


Part of the work was done while the second author was visiting Tel Aviv University.



Hide All
[1]Balogh, J., Morris, R. and Samotij, W. (2015) Independent sets in hypergraphs. J. Amer. Math. Soc. 28 669709.
[2]Balogh, J., Morris, R. and Samotij, W. (2018) The method of hypergraph containers. In Proceedings of the International Congress of Mathematicians (Rio de Janeiro 2018), Vol. IV, Invited Lectures, pp. 30593092, World Scientific.
[3]Conlon, D., Gowers, W. T., Samotij, W. and Schacht, M. (2014) On the KŁR conjecture in random graphs. Israel J. Math. 203 535580.
[4]Frankl, P. and Rödl, V. (1986) Large triangle-free subgraphs in graphs without K 4. Graphs Combin. 2 135144.
[5]Friedgut, E. and Krivelevich, M. (2000) Sharp thresholds for certain Ramsey properties of random graphs. Random Struct. Algorithms 17 119.
[6]Friedgut, E., Rödl, V., Ruciński, A. and Tetali, P. (2006) A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring, Vol. 179, no. 845 of Memoirs of the American Mathematical Society, AMS.
[7]Gugelmann, L., Nenadov, R., Person, Y., Škorić, N., Steger, A. and Thomas, H. (2017) Symmetric and asymmetric Ramsey properties in random hypergraphs. Forum Math. Sigma 5 e28, 47.
[8]Hancock, R., Staden, K. and Treglown, A. (2019) Independent sets in hypergraphs and Ramsey properties of graphs and the integers. SIAM J. Discrete Math. 33 153188.
[9]Janson, S. (1998) New versions of Suen’s correlation inequality. Random Struct. Algorithms 13 467483.
[10]Janson, S., Łuczak, T. and Ruciński, A. (1990) An exponential bound for the probability of nonexistence of a specified subgraph in a random graph. In Random Graphs ’87 (Poznań, 1987), pp. 7387, Wiley.
[11]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience.
[12]Kohayakawa, Y. and Kreuter, B. (1997) Threshold functions for asymmetric Ramsey properties involving cycles. Random Struct. Algorithms 11 245276.
[13]Kohayakawa, Y., Łuczak, T. and Rödl, V. (1997) On K 4-free subgraphs of random graphs. Combinatorica 17 173213.
[14]Kohayakawa, Y., Schacht, M. and Spöhel, R. (2014) Upper bounds on probability thresholds for asymmetric Ramsey properties. Random Struct. Algorithms 44 128.
[15]Łuczak, T., Ruciński, A. and Voigt, B. (1992) Ramsey properties of random graphs. J. Combin. Theory Ser. B 56 5568.
[16]Marciniszyn, M., Skokan, J., Spöhel, R. and Steger, A. (2009) Asymmetric Ramsey properties of random graphs involving cliques. Random Struct. Algorithms 34 419453.
[17]Nenadov, R., Person, Y., Škorić, N. and Steger, A. (2017) An algorithmic framework for obtaining lower bounds for random Ramsey problems. J. Combin. Theory Ser. B 124 138.
[18]Nenadov, R. and Steger, A. (2016) A short proof of the random Ramsey theorem. Combin. Probab. Comput. 25 130144.
[19]Rödl, V. and Ruciński, A. (1993) Lower bounds on probability thresholds for Ramsey properties. In Combinatorics: Paul Erdös is Eighty, Vol. 1, Bolyai Society Mathematical Studies, pp. 317346, János Bolyai Mathematical Society.
[20]Rödl, V. and Ruciński, A. (1994) Random graphs with monochromatic triangles in every edge coloring. Random Struct. Algorithms 5 253270.
[21]Rödl, V. and Ruciński, A. (1995) Threshold functions for Ramsey properties. J. Amer. Math. Soc. 8 917942.
[22]Ruciński, A. and Vince, A. (1985) Balanced graphs and the problem of subgraphs of random graphs. Congr. Numer. 49 181190.
[23]Saxton, D. and Thomason, A. (2015) Hypergraph containers. Invent. Math. 201 925992.
[24]Schacht, M. and Schulenburg, F. (2018) Sharp thresholds for Ramsey properties of strictly balanced nearly bipartite graphs. Random Struct. Algorithms 52 340.

MSC classification

Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey properties

  • Frank Mousset (a1), Rajko Nenadov (a2) and Wojciech Samotij (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.