Skip to main content Accessibility help
×
Home

Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey properties

  • Frank Mousset (a1), Rajko Nenadov (a2) and Wojciech Samotij (a1)

Abstract

For fixed graphs F1,…,Fr, we prove an upper bound on the threshold function for the property that G(n, p) → (F1,…,Fr). This establishes the 1-statement of a conjecture of Kohayakawa and Kreuter.

Copyright

Corresponding author

*Corresponding author. Email: moussetfrank@gmail.com

Footnotes

Hide All

Research supported in part by the Israel Science Foundation (ISF) grants 1147/14 (FM and WS) and 1028/16 (FM) and ERC Starting Grant 633509 (FM).

A first draft of this paper was produced at the workshop of the research group of Angelika Steger in Buchboden in July 2018.

§

Part of the work was done while the second author was visiting Tel Aviv University.

Footnotes

References

Hide All
[1]Balogh, J., Morris, R. and Samotij, W. (2015) Independent sets in hypergraphs. J. Amer. Math. Soc. 28 669709.
[2]Balogh, J., Morris, R. and Samotij, W. (2018) The method of hypergraph containers. In Proceedings of the International Congress of Mathematicians (Rio de Janeiro 2018), Vol. IV, Invited Lectures, pp. 30593092, World Scientific.
[3]Conlon, D., Gowers, W. T., Samotij, W. and Schacht, M. (2014) On the KŁR conjecture in random graphs. Israel J. Math. 203 535580.
[4]Frankl, P. and Rödl, V. (1986) Large triangle-free subgraphs in graphs without K 4. Graphs Combin. 2 135144.
[5]Friedgut, E. and Krivelevich, M. (2000) Sharp thresholds for certain Ramsey properties of random graphs. Random Struct. Algorithms 17 119.
[6]Friedgut, E., Rödl, V., Ruciński, A. and Tetali, P. (2006) A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring, Vol. 179, no. 845 of Memoirs of the American Mathematical Society, AMS.
[7]Gugelmann, L., Nenadov, R., Person, Y., Škorić, N., Steger, A. and Thomas, H. (2017) Symmetric and asymmetric Ramsey properties in random hypergraphs. Forum Math. Sigma 5 e28, 47.
[8]Hancock, R., Staden, K. and Treglown, A. (2019) Independent sets in hypergraphs and Ramsey properties of graphs and the integers. SIAM J. Discrete Math. 33 153188.
[9]Janson, S. (1998) New versions of Suen’s correlation inequality. Random Struct. Algorithms 13 467483.
[10]Janson, S., Łuczak, T. and Ruciński, A. (1990) An exponential bound for the probability of nonexistence of a specified subgraph in a random graph. In Random Graphs ’87 (Poznań, 1987), pp. 7387, Wiley.
[11]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience.
[12]Kohayakawa, Y. and Kreuter, B. (1997) Threshold functions for asymmetric Ramsey properties involving cycles. Random Struct. Algorithms 11 245276.
[13]Kohayakawa, Y., Łuczak, T. and Rödl, V. (1997) On K 4-free subgraphs of random graphs. Combinatorica 17 173213.
[14]Kohayakawa, Y., Schacht, M. and Spöhel, R. (2014) Upper bounds on probability thresholds for asymmetric Ramsey properties. Random Struct. Algorithms 44 128.
[15]Łuczak, T., Ruciński, A. and Voigt, B. (1992) Ramsey properties of random graphs. J. Combin. Theory Ser. B 56 5568.
[16]Marciniszyn, M., Skokan, J., Spöhel, R. and Steger, A. (2009) Asymmetric Ramsey properties of random graphs involving cliques. Random Struct. Algorithms 34 419453.
[17]Nenadov, R., Person, Y., Škorić, N. and Steger, A. (2017) An algorithmic framework for obtaining lower bounds for random Ramsey problems. J. Combin. Theory Ser. B 124 138.
[18]Nenadov, R. and Steger, A. (2016) A short proof of the random Ramsey theorem. Combin. Probab. Comput. 25 130144.
[19]Rödl, V. and Ruciński, A. (1993) Lower bounds on probability thresholds for Ramsey properties. In Combinatorics: Paul Erdös is Eighty, Vol. 1, Bolyai Society Mathematical Studies, pp. 317346, János Bolyai Mathematical Society.
[20]Rödl, V. and Ruciński, A. (1994) Random graphs with monochromatic triangles in every edge coloring. Random Struct. Algorithms 5 253270.
[21]Rödl, V. and Ruciński, A. (1995) Threshold functions for Ramsey properties. J. Amer. Math. Soc. 8 917942.
[22]Ruciński, A. and Vince, A. (1985) Balanced graphs and the problem of subgraphs of random graphs. Congr. Numer. 49 181190.
[23]Saxton, D. and Thomason, A. (2015) Hypergraph containers. Invent. Math. 201 925992.
[24]Schacht, M. and Schulenburg, F. (2018) Sharp thresholds for Ramsey properties of strictly balanced nearly bipartite graphs. Random Struct. Algorithms 52 340.

MSC classification

Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey properties

  • Frank Mousset (a1), Rajko Nenadov (a2) and Wojciech Samotij (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.