[1]
Andrade, J. S. Jr, Herrmann, H. J., Andrade, R. F. S. and da Silva, L. R. (2005) Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs. Phys. Rev. Lett.
94
018702.

[2]
Arnborg, S., Corneil, D. G. and Proskurowski, A. (1987) Complexity of finding embeddings in a *k*-tree. SIAM J. Algebraic Discrete Methods
8
277–284.

[3]
Arya, S., Golin, M. J. and Mehlhorn, K. (1999) On the expected depth of random circuits. Combin. Probab. Comput.
8
209–228.

[4]
Barabási, A.-L. and Albert, R. (1999) Emergence of scaling in random networks. Science
286
(5439)
509–512.

[5]
Beineke, L. W. and Pippert, R. E. (1969) The number of labeled *k*-dimensional trees. J. Combin. Theory
6
200–205.

[6]
Bergeron, F., Flajolet, P. and Salvy, B. (1992) Varieties of increasing trees. In CAAP '92, Vol. 581 of *Lecture Notes in Computer Science*, Springer, pp. 24–48.

[7]
Berztiss, A. T. (1980) Depth-first *k*-trees and critical path analysis. Acta Inform.
13
325–346.

[8]
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D.-U. (2006) Complex networks: Structure and dynamics. Phys. Rep.
424
175–308.

[9]
Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G. (2001) The degree sequence of a scale-free random graph process. Random Struct. Alg.
18
279–290.

[10]
Chauvin, B., Klein, T., Marckert, J.-F. and Rouault, A. (2005) Martingales and profile of binary search trees. Electron. J. Probab.
10
420–435.

[11]
Chern, H.-H. and Hwang, H.-K. (2001) Phase changes in random *m*-ary search trees and generalized quicksort. Random Struct. Alg.
19
316–358.

[12]
Chern, H.-H. and Hwang, H.-K. (2001) Transitional behaviors of the average cost of Quicksort with median-of-(2*t*+1). Algorithmica
29
44–69.

[13]
Chern, H.-H., Hwang, H.-K. and Tsai, T.-H. (2002) An asymptotic theory for Cauchy–Euler differential equations with applications to the analysis of algorithms. J. Algorithms
44
177–225.

[14]
Darrasse, A., Hwang, H.-K., Bodini, O. and Soria, M. (2010) The connectivity-profile of random increasing *k*-trees. In Proc. Seventh Workshop on Analytic Algorithmics and Combinatorics: ANALCO, SIAM, pp. 99–106.

[15]
Darrasse, A. and Soria, M. (2009) Limiting distribution for distances in *k*-trees. In IWOCA 2009, Vol. 5874 of *Lecture Notes in Computer Science*, Springer, pp. 170–182.

[16]
Darrasse, A. and Soria, M. (2012) A unifying structural approach to the analysis of parameters in *k*-trees. Submitted.

[17]
Devroye, L. and Janson, S. (2011) Long and short paths in uniform random recursive dags. Arkiv för Matematik
49
61–77.

[18]
Drmota, M. (2009) Random Trees, Springer.

[19]
Drmota, M. and Gittenberger, B. (1997) On the profile of random trees. Random Struct. Alg.
10
421–451.

[20]
Drmota, M. and Hwang, H.-K. (2005) Bimodality and phase transitions in the profile variance of random binary search trees. SIAM J. Discrete Math.
19
19–45.

[21]
Drmota, M., Janson, S. and Neininger, R. (2008) A functional limit theorem for the profile of search trees. Ann. Appl. Probab.
18
288–333.

[22]
Durrett, R. (2006) Random Graph Dynamics, Cambridge University Press.

[23]
Fisher, M. L. (1994) Optimal solution of vehicle routing problems using minimum *k*-trees. Oper. Res.
42
626–642.

[24]
Flajolet, P. and Odlyzko, A. (1990) Singularity analysis of generating functions. SIAM J. Discrete Math.
3
216–240.

[25]
Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.

[26]
Frieze, A. M. and Tsourakakis, C. E. (2012) On certain properties of random Apollonian networks. In WAW (Bonato, A. and Janssen, J. C. M., eds), Vol. 7323 of *Lecture Notes in Computer Science*, Springer, pp. 93–112.

[27]
Fuchs, M., Hwang, H.-K. and Neininger, R. (2006) Profiles of random trees: Limit theorems for random recursive trees and binary search trees. Algorithmica
46
367–407.

[28]
Gao, Y. (2009) The degree distribution of random *k*-trees. Theoret. Comput. Sci.
410
688–695.

[29]
Greene, D. H. (1983) Labelled formal languages and their uses. PhD thesis, Stanford University.

[30]
Hennequin, P. (1991) Analyse en moyenne d'algorithme, tri rapide et arbres de recherche. Thesis, LIX, École Polytechnique.

[31]
Hwang, H.-K. (1995) Asymptotic expansions for the Stirling numbers of the first kind. J. Combin. Theory Ser. A
71
343–351.

[32]
Hwang, H.-K. (2007) Profiles of random trees: Plane-oriented recursive trees. Random Struct. Alg.
30
380–413.

[33]
Labelle, G., Lamathe, C. and Leroux, P. (2004) Labelled and unlabelled enumeration of *k*-gonal 2-trees. J. Combin. Theory Ser. A
106
193–219.

[34]
Lin, G. (2005) An improved approximation algorithm for multicast *k*-tree routing. J. Combin. Optim.
9
349–356.

[35]
Mahmoud, H. M., Smythe, R. T. and Szymański, J. (1993) On the structure of random plane-oriented recursive trees and their branches. Random Struct. Alg.
4
151–176.

[36]
Marckert, J.-F. and Albenque, M. (2008) Some families of increasing planar maps. Electron. J. Probab.
13
1624–1671.

[37]
Martinhon, C., Lucena, A. and Maculan, N. (2004) Stronger *K*-tree relaxations for the vehicle routing problem. European J. Oper. Res.
158
56–71.

[38]
Meir, A. and Moon, J. W. (1978) On the altitude of nodes in random trees. Canad. J. Math.
30
997–1015.

[39]
Morcrette, B. (2010) Combinatoire analytique et modèles d'urnes. Report, Master Parisien de Recherche en Informatique.

[40]
Newelski, L. and Rosłanowski, A. (1993) The ideal determined by the unsymmetric game. Proc. Amer. Math. Soc.
117
823–831.

[41]
Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Rev.
45
167–256.

[42]
Palmer, E. M. and Read, R. C. (1973) On the number of plane 2-trees. J. London Math. Soc.
(2)
6
583–592.

[43]
Panholzer, A. and Seitz, G. (2010) Ordered increasing *k*-trees: Introduction and analysis of a preferential attachment network model. In AofA'10 (Drmota, M. and Gittenberger, B., eds), DMTCS, pp. 549–564.

[44]
Park, G., Hwang, H.-K., Nicodème, P. and Szpankowski, W. (2009) Profiles of tries. SIAM J. Comput.
38
1821–1880.

[45]
Pávó, I. (1971) Generation of the *k*-trees of a graph. Acta Cybernet.
1
57–68.

[46]
Prodinger, H. and Urbanek, F. J. (1983) On monotone functions of tree structures. Discrete Appl. Math.
5
223–239.

[47]
Proskurowski, A. (1980)
*K*-trees: representations and distances. Congr. Numer.
29
785–794.

[48]
Rényi, A. (1970) On the number of endpoints of a *k*-tree. Studia Sci. Math. Hungar.
5
5–10.

[49]
Rose, D. J. (1974) On simple characterizations of *k*-trees. Discrete Math.
7
317–322.

[50]
Stevens, W. R. (1994) Traceroute program. Chapter 8 in TCP/IP Illustrated, Vol. 1: *The Protocols*, Addison-Wesley Professional.

[51]
Szymański, J. (1987) On a nonuniform random recursive tree. In Random Graphs '85: Poznań, 1985, Vol. 144 of *North-Holland Mathematics Studies*, North-Holland, pp. 297–306.

[52]
Viger, F., Augustin, B., Cuvellier, X., Magnien, C., Latapy, M., Friedman, T. and Teixeira, R. (2008) Detection, understanding, and prevention of traceroute measurement artifacts. Comput. Networks
52
998–1018.

[53]
Win, S. (1989) On a connection between the existence of *k*-trees and the toughness of a graph. Graphs Combin.
5
201–205.

[54]
Zhang, Z., Chen, L., Zhou, S., Fang, L., Guan, J. and Zou, T. (2008) Analytical solution of average path length for Apollonian networks. Phys. Rev. E
77
017102.

[55]
Zhang, Z., Rong, L. and Comellas, F. (2006) High-dimensional random Apollonian networks. Phys. A
364
610–618.