Skip to main content Accessibility help
×
Home

Shape Measures of Random Increasing k-trees

  • ALEXIS DARRASSE (a1), HSIEN-KUEI HWANG (a2) and MICHÈLE SORIA (a1)

Abstract

Random increasing k-trees represent an interesting and useful class of strongly dependent graphs that have been studied widely, including being used recently as models for complex networks. In this paper we study an informative notion called BFS-profile and derive, by several analytic means, asymptotic estimates for its expected value, together with the limiting distribution in certain cases; some interesting consequences predicting more precisely the shapes of random k-trees are also given. Our methods of proof rely essentially on a bijection between k-trees and ordinary trees, the resolution of linear systems, and a specially framed notion called Flajolet–Odlyzko admissibility.

Copyright

Footnotes

Hide All

A complete version containing an appendix on zero distribution of the indicial polynomial and another on random generation of random k-trees can be found on the second author's webpage. This version will be referred to as DHS throughout this paper.

Footnotes

References

Hide All
[1] Andrade, J. S. Jr, Herrmann, H. J., Andrade, R. F. S. and da Silva, L. R. (2005) Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs. Phys. Rev. Lett. 94 018702.
[2] Arnborg, S., Corneil, D. G. and Proskurowski, A. (1987) Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8 277284.
[3] Arya, S., Golin, M. J. and Mehlhorn, K. (1999) On the expected depth of random circuits. Combin. Probab. Comput. 8 209228.
[4] Barabási, A.-L. and Albert, R. (1999) Emergence of scaling in random networks. Science 286 (5439) 509512.
[5] Beineke, L. W. and Pippert, R. E. (1969) The number of labeled k-dimensional trees. J. Combin. Theory 6 200205.
[6] Bergeron, F., Flajolet, P. and Salvy, B. (1992) Varieties of increasing trees. In CAAP '92, Vol. 581 of Lecture Notes in Computer Science, Springer, pp. 2448.
[7] Berztiss, A. T. (1980) Depth-first k-trees and critical path analysis. Acta Inform. 13 325346.
[8] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D.-U. (2006) Complex networks: Structure and dynamics. Phys. Rep. 424 175308.
[9] Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G. (2001) The degree sequence of a scale-free random graph process. Random Struct. Alg. 18 279290.
[10] Chauvin, B., Klein, T., Marckert, J.-F. and Rouault, A. (2005) Martingales and profile of binary search trees. Electron. J. Probab. 10 420435.
[11] Chern, H.-H. and Hwang, H.-K. (2001) Phase changes in random m-ary search trees and generalized quicksort. Random Struct. Alg. 19 316358.
[12] Chern, H.-H. and Hwang, H.-K. (2001) Transitional behaviors of the average cost of Quicksort with median-of-(2t+1). Algorithmica 29 4469.
[13] Chern, H.-H., Hwang, H.-K. and Tsai, T.-H. (2002) An asymptotic theory for Cauchy–Euler differential equations with applications to the analysis of algorithms. J. Algorithms 44 177225.
[14] Darrasse, A., Hwang, H.-K., Bodini, O. and Soria, M. (2010) The connectivity-profile of random increasing k-trees. In Proc. Seventh Workshop on Analytic Algorithmics and Combinatorics: ANALCO, SIAM, pp. 99106.
[15] Darrasse, A. and Soria, M. (2009) Limiting distribution for distances in k-trees. In IWOCA 2009, Vol. 5874 of Lecture Notes in Computer Science, Springer, pp. 170182.
[16] Darrasse, A. and Soria, M. (2012) A unifying structural approach to the analysis of parameters in k-trees. Submitted.
[17] Devroye, L. and Janson, S. (2011) Long and short paths in uniform random recursive dags. Arkiv för Matematik 49 6177.
[18] Drmota, M. (2009) Random Trees, Springer.
[19] Drmota, M. and Gittenberger, B. (1997) On the profile of random trees. Random Struct. Alg. 10 421451.
[20] Drmota, M. and Hwang, H.-K. (2005) Bimodality and phase transitions in the profile variance of random binary search trees. SIAM J. Discrete Math. 19 1945.
[21] Drmota, M., Janson, S. and Neininger, R. (2008) A functional limit theorem for the profile of search trees. Ann. Appl. Probab. 18 288333.
[22] Durrett, R. (2006) Random Graph Dynamics, Cambridge University Press.
[23] Fisher, M. L. (1994) Optimal solution of vehicle routing problems using minimum k-trees. Oper. Res. 42 626642.
[24] Flajolet, P. and Odlyzko, A. (1990) Singularity analysis of generating functions. SIAM J. Discrete Math. 3 216240.
[25] Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.
[26] Frieze, A. M. and Tsourakakis, C. E. (2012) On certain properties of random Apollonian networks. In WAW (Bonato, A. and Janssen, J. C. M., eds), Vol. 7323 of Lecture Notes in Computer Science, Springer, pp. 93112.
[27] Fuchs, M., Hwang, H.-K. and Neininger, R. (2006) Profiles of random trees: Limit theorems for random recursive trees and binary search trees. Algorithmica 46 367407.
[28] Gao, Y. (2009) The degree distribution of random k-trees. Theoret. Comput. Sci. 410 688695.
[29] Greene, D. H. (1983) Labelled formal languages and their uses. PhD thesis, Stanford University.
[30] Hennequin, P. (1991) Analyse en moyenne d'algorithme, tri rapide et arbres de recherche. Thesis, LIX, École Polytechnique.
[31] Hwang, H.-K. (1995) Asymptotic expansions for the Stirling numbers of the first kind. J. Combin. Theory Ser. A 71 343351.
[32] Hwang, H.-K. (2007) Profiles of random trees: Plane-oriented recursive trees. Random Struct. Alg. 30 380413.
[33] Labelle, G., Lamathe, C. and Leroux, P. (2004) Labelled and unlabelled enumeration of k-gonal 2-trees. J. Combin. Theory Ser. A 106 193219.
[34] Lin, G. (2005) An improved approximation algorithm for multicast k-tree routing. J. Combin. Optim. 9 349356.
[35] Mahmoud, H. M., Smythe, R. T. and Szymański, J. (1993) On the structure of random plane-oriented recursive trees and their branches. Random Struct. Alg. 4 151176.
[36] Marckert, J.-F. and Albenque, M. (2008) Some families of increasing planar maps. Electron. J. Probab. 13 16241671.
[37] Martinhon, C., Lucena, A. and Maculan, N. (2004) Stronger K-tree relaxations for the vehicle routing problem. European J. Oper. Res. 158 5671.
[38] Meir, A. and Moon, J. W. (1978) On the altitude of nodes in random trees. Canad. J. Math. 30 9971015.
[39] Morcrette, B. (2010) Combinatoire analytique et modèles d'urnes. Report, Master Parisien de Recherche en Informatique.
[40] Newelski, L. and Rosłanowski, A. (1993) The ideal determined by the unsymmetric game. Proc. Amer. Math. Soc. 117 823831.
[41] Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Rev. 45 167256.
[42] Palmer, E. M. and Read, R. C. (1973) On the number of plane 2-trees. J. London Math. Soc. (2) 6 583592.
[43] Panholzer, A. and Seitz, G. (2010) Ordered increasing k-trees: Introduction and analysis of a preferential attachment network model. In AofA'10 (Drmota, M. and Gittenberger, B., eds), DMTCS, pp. 549564.
[44] Park, G., Hwang, H.-K., Nicodème, P. and Szpankowski, W. (2009) Profiles of tries. SIAM J. Comput. 38 18211880.
[45] Pávó, I. (1971) Generation of the k-trees of a graph. Acta Cybernet. 1 5768.
[46] Prodinger, H. and Urbanek, F. J. (1983) On monotone functions of tree structures. Discrete Appl. Math. 5 223239.
[47] Proskurowski, A. (1980) K-trees: representations and distances. Congr. Numer. 29 785794.
[48] Rényi, A. (1970) On the number of endpoints of a k-tree. Studia Sci. Math. Hungar. 5 510.
[49] Rose, D. J. (1974) On simple characterizations of k-trees. Discrete Math. 7 317322.
[50] Stevens, W. R. (1994) Traceroute program. Chapter 8 in TCP/IP Illustrated, Vol. 1: The Protocols, Addison-Wesley Professional.
[51] Szymański, J. (1987) On a nonuniform random recursive tree. In Random Graphs '85: Poznań, 1985, Vol. 144 of North-Holland Mathematics Studies, North-Holland, pp. 297306.
[52] Viger, F., Augustin, B., Cuvellier, X., Magnien, C., Latapy, M., Friedman, T. and Teixeira, R. (2008) Detection, understanding, and prevention of traceroute measurement artifacts. Comput. Networks 52 9981018.
[53] Win, S. (1989) On a connection between the existence of k-trees and the toughness of a graph. Graphs Combin. 5 201205.
[54] Zhang, Z., Chen, L., Zhou, S., Fang, L., Guan, J. and Zou, T. (2008) Analytical solution of average path length for Apollonian networks. Phys. Rev. E 77 017102.
[55] Zhang, Z., Rong, L. and Comellas, F. (2006) High-dimensional random Apollonian networks. Phys. A 364 610618.

MSC classification

Shape Measures of Random Increasing k-trees

  • ALEXIS DARRASSE (a1), HSIEN-KUEI HWANG (a2) and MICHÈLE SORIA (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.