[1]Adams, P., Bryant, D. and Buchanan, M. (2008) Completing partial Latin squares with two filled rows and two filled columns. Electron. J. Combin. 15 #R56.

[2]Andersen, L. D. and Hilton, A. J. W. (1983) Thank Evans! Proc. London Math. Soc. 47 507–522.

[3]Andrén, L. J. (2010) On Latin squares and avoidable arrays. Doctoral thesis, Umeå University.

[4]Andrén, L. J., Casselgren, C. J. and Öhman, L.-D. (2013) Avoiding arrays of odd order by Latin squares. Combin. Probab. Comput. 22 184–212.

[5]Asratian, A. S., Denley, T. M. J. and Häggkvist, R. (1998) Bipartite Graphs and Their Applications, Cambridge University Press.

[6]Barber, B., Kühn, D., Lo, A., Osthus, D. and Taylor, A. (2017) Clique decompositions of multipartite graphs and completion of Latin squares. J. Combin. Theory Ser. A 151 146–201.

[7]Bartlett, P. (2013) Completions of ɛ-dense partial Latin squares. J. Combin. Designs 21 447–463.

[8]Brègman, L. M. (1973) Certain properties of nonnegative matrices and their permanents. Dokl. Akad. Nauk SSSR 211 27–30.

[9]Casselgren, C. J. (2012) On avoiding some families of arrays. Discrete Math. 312 963–972.

[10]Casselgren, C. J. and Häggkvist, R. (2013) Completing partial Latin squares with one filled row, column and symbol. Discrete Math. 313 1011–1017.

[11]Cavenagh, N. (2010) Avoidable partial Latin squares of order 4m + 1. Ars Combinatoria 95 257–275.

[12]Chetwynd, A. G. and Häggkvist, R. (1984) Completing partial *n* × *n* Latin squares where each row, column and symbol is used at most *cn* times. Research report, Department of Mathematics, Stockholm University.

[13]Chetwynd, A. G. and Rhodes, S. J. (1995) Chessboard squares. Discrete Math. 141 47–59.

[14]Chetwynd, A. G. and Rhodes, S. J. (1997) Avoiding partial Latin squares and intricacy. Discrete Math. 177 17–32.

[15]Chetwynd, A. G. and Rhodes, S. J. (1997) Avoiding multiple entry arrays. J. Graph Theory 25 257–266.

[16]Colbourn, C. J. (1984) The complexity of completing partial Latin squares. Discrete Appl. Math. 8 25–30.

[17]Cutler, J. and Öhman, L.-D. (2006) Latin squares with forbidden entries. Electron. J. Combin. 13 #R47.

[18]Daykin, D. E. and Häggkvist, R. (1984) Completion of sparse partial Latin squares. In *Graph Theory and Combinatorics: Proceedings of the Cambridge Combinatorial Conference in Honour of Paul Erdös*, Academic Press, pp. 127–132.

[19]Denley, T. and Kuhl, J. (2012) Constrained completion of partial Latin squares. Discrete Math. 312 1251–1256.

[20]Evans, T. (1960) Embedding incomplete Latin squares. Amer. Math. Monthly 67 958–961.

[21]Gustavsson, T. (1991) Decompositions of large graphs and digraphs with high minimum degree. Doctoral thesis, Stockholm University.

[22]Häggkvist, R. (1989) A note on Latin squares with restricted support. Discrete Math. 75 253–254.

[23]Häggkvist, R. Personal communication.

[24]Kuhl, J. S. and Schroeder, M. (2016) Completing partial Latin squares with one nonempty row, column, and symbol. Electron. J. Combin. 23 #P2.23.

[25]Markström, K. and Öhman, L.-D. (2009) Unavoidable arrays. Contrib. Discrete Math. 5 90–106.

[26]Öhman, L.-D. (2011) Partial Latin squares are avoidable. Ann. Combin. 15 485–497.

[27]Öhman, L.-D. (2011) Latin squares with prescriptions and restrictions. Austral. J. Combin. 51 77–87.

[28]Ryser, H. J. (1951) A combinatorial theorem with an application to Latin rectangles. Proc. Amer. Math. Soc. 2 550–552.

[29]Smetaniuk, B. (1981) A new construction for Latin squares, I: Proof of the Evans conjecture. Ars Combinatoria 11 155–172.

[30]Wanless, I. (2002) A generalization of transversals for Latin squares. Electron. J. Combin. 2 #R12.