Skip to main content Accessibility help
×
Home

Rapid Steiner Symmetrization of Most of a Convex Body and the Slicing Problem

  • B. KLARTAG (a1) and V. MILMAN (a1)

Abstract

For an arbitrary n-dimensional convex body, at least almost n Steiner symmetrizations are required in order to symmetrize the body into an isomorphic ellipsoid. We say that a body $T \subset \mathbb{R}^n$ is ‘quickly symmetrizable with function $c(\varepsilon)$’ if for any $\varepsilon > 0$ there exist only $\lfloor \varepsilon n \rfloor$ symmetrizations that transform T into a body which is $c(\varepsilon)$-isomorphic to an ellipsoid. In this note we ask, given a body $K \subset \mathbb{R}^n$, whether it is possible to remove a small portion of its volume and obtain a body $T \subset K$ which is quickly symmetrizable. We show that this question, for $c(\varepsilon)$ polynomially depending on $\frac{1}{\varepsilon}$, is equivalent to the slicing problem.

Copyright

Related content

Powered by UNSILO

Rapid Steiner Symmetrization of Most of a Convex Body and the Slicing Problem

  • B. KLARTAG (a1) and V. MILMAN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.