[1]Aigner-Horev, E. and Person, Y. (2019) Monochromatic Schur triples in randomly perturbed dense sets of integers. SIAM J. Discrete Math. 33 2175–2180.

[2]Alon, N. and Spencer, J. (2015) The Probabilistic Method, Wiley.

[3]Balogh, J., Morris, R. and Samotij, W. (2015) Independent sets in hypergraphs. J. Amer. Math. Soc. 28 669–709.

[4]Balogh, J., Treglown, A. and Wagner, A. Z. (2019) Tilings in randomly perturbed dense graphs. Combin. Probab. Comput. 28 159–176.

[5]Bedenknecht, W., Han, J., Kohayakawa, Y. and Mota, G. O. (2019) Powers of tight Hamilton cycles in randomly perturbed hypergraphs. Random Struct. Algorithms 55 795–807.

[6]Bennett, P., Dudek, A. and Frieze, A. (2017) Adding random edges to create the square of a Hamilton cycle. arXiv:1710.02716 [7]Bohman, T., Frieze, A., Krivelevich, M. and Martin, R. (2004) Adding random edges to dense graphs. Random Struct. Algorithms 24 105–117.

[8]Bohman, T., Frieze, A. and Martin, R. (2003) How many edges make a dense graph Hamiltonian? Random Struct. Algorithms 22 33–42.

[9]Böttcher, J., Han, J., Kohayakawa, Y., Montgomery, R., Parczyk, O. and Person, Y. (2019) Universality for bounded degree spanning trees in randomly perturbed graphs. Random Struct. Algorithms 55 854–864.

[10]Böttcher, J., Montgomery, R., Parczyk, O. and Person, Y. (2020) Embedding spanning bounded degree graphs in randomly perturbed graphs. Mathematika 66 422–447.

[11]Chung, F. (1997) Open problems of Paul Erdős in graph theory. J. Graph Theory 25 3–36.

[12]Conlon, D. (2009) A new upper bound for diagonal Ramsey numbers. Ann. of Math. 170 941–960.

[13]Conlon, D. and Gowers, W. T. (2016) Combinatorial theorems in sparse random sets. Ann. Math. 84 367–454.

[14]Day, A. N. and Johnson, J. R. (2017) Multicolour Ramsey numbers of odd cycles. J. Combin. Theory Ser. B 124 56–63.

[15]Dudek, A., Reiher, C., Ruciński, A. and Schacht, M. (2020) Powers of Hamiltonian cycles in randomly augmented graphs. Random Struct. Algorithms 56 122–141.

[16]Erdős, P. and Graham, R. L. (1973) On partition theorems for finite graphs. Colloq. Math. Soc. János Bolyai. 10 515–527.

[17]Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. Soc. 52 1087–1091.

[18]Fox, J. and Sudakov, B. (2011) Dependent random choice. Random Struct. Algorithms 38 68–99.

[19]Friedgut, E., Rödl, V. and Schacht, M. (2010) Ramsey properties of random discrete structures. Random Struct. Algorithms 37 407–436.

[20]Gugelmann, L., Nenadov, R., Person, Y., Škorić, N., Steger, A. and Thomas, H. (2017) Symmetric and asymmetric Ramsey properties in random hypergraphs. Forum Math. Sigma 5 E28.

[21]Han, J. and Zhao, Y. Hamiltonicity in randomly perturbed hypergraphs. *J. Combin. Theory Ser. B*, to appear.

[22]Hancock, R., Staden, K. and Treglown, A. (2019) Independent sets in hypergraphs and Ramsey properties of graphs and the integers. SIAM J. Discrete Math. 33 153–188.

[23]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.

[24]Joos, F. and Kim, J. (2020) Spanning trees in randomly perturbed graphs. Random Struct. Algorithms 56 169–219.

[25]Kohayakawa, Y. and Kreuter, B. (1997) Threshold functions for asymmetric Ramsey properties involving cycles. Random Struct. Algorithms 11 245–276.

[26]Komlós, J. and Simonovits, M. (1996) Szemerédi’s Regularity Lemma and its applications in graph theory. In *Combinatorics: Paul Erdös is Eighty*, Vol. 2 (Miklós, D., Sós, V. T. and Szőnyi, T. eds.), pp. 295–352, János Bolyai Mathematical Society.

[27]Kreuter, B. (1996) Threshold functions for asymmetric Ramsey properties with respect to vertex colorings. Random Struct. Algorithms 9 335–348.

[28]Krivelevich, M., Kwan, M. and Sudakov, B. (2016) Cycles and matchings in randomly perturbed digraphs and hypergraphs. Combin. Probab. Comput. 25 909–927.

[29]Krivelevich, M., Kwan, M. and Sudakov, B. (2017) Bounded-degree spanning trees in randomly perturbed graphs. SIAM J. Discrete Math. 31 155–171.

[30]Krivelevich, M., Sudakov, B. and Tetali, P. (2006) On smoothed analysis in dense graphs and formulas. Random Struct. Algorithms 29 180–193.

[31]łuczak, T., Ruciński, A. and Voigt, B. (1992) Ramsey properties of random graphs. J. Combin. Theory Ser. B 56 55–68.

[32]Marciniszyn, M., Skokan, J., Spöhel, R. and Steger, A. (2009) Asymmetric Ramsey properties of random graphs involving cliques. Random Struct. Algorithms 34 419–453.

[33]McDowell, A. and Mycroft, R. (2018) Hamilton *l*-cycles in randomly perturbed hypergraphs. Electron. J. Combin. 25 P4.36.

[34]Mousset, F., Nenadov, R. and Samotij, W. (2018) Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey properties. *Comb. Probab. Comput.* arXiv:1808.05070 [35]Nenadov, R. and Steger, A. (2016) A short proof of the random Ramsey theorem. Combin. Probab. Comput. 25 130–144.

[36]Nenadov, R. and Trujić, M. (2018) Sprinkling a few random edges doubles the power. arXiv:1811.09209 [37]Powierski, E. (2019) Ramsey properties of randomly perturbed dense graphs. arXiv:1902.02197 [38]Rödl, V. and Ruciński, A. (1993) Lower bounds on probability thresholds for Ramsey properties. In *Combinatorics: Paul Erdős is Eighty*, Vol. 1 (Miklós, D., Sós, V. T. and Szőnyi, T., eds), pp. 317–346, János Bolyai Mathematical Society.

[39]Rödl, V. and Ruciński, A. (1994) Random graphs with monochromatic triangles in every edge coloring. Random Struct. Algorithms 5 253–270.

[40]Rödl, V. and Ruciński, A. (1995) Threshold functions for Ramsey properties. J. Amer. Math. Soc. 8 917–942.

[41]Saxton, D. and Thomason, A. (2015) Hypergraph containers. Inventio Math. 201 925–992.

[42]Spencer, J. H. (1975) Ramsey’s theorem: a new lower bound. J. Combin. Theory Ser. A 18 108–115.

[43]Szemerédi, E. (1976) Regular partitions of graphs. In *Problèmes Combinatoires et Théorie des Graphes*, Vol. 260 of Colloques Internationaux CNRS, pp. 399–401.

[44]Turán, P. (1941) On an extremal problem in graph theory (in Hungarian). Math. Fiz. Lapok 48 436–452.