Skip to main content Accessibility help
×
Home

Packing Graphs of Bounded Codegree

  • WOUTER CAMES VAN BATENBURG (a1) and ROSS J. KANG (a1)

Abstract

Two graphs G1 and G2 on n vertices are said to pack if there exist injective mappings of their vertex sets into [n] such that the images of their edge sets are disjoint. A longstanding conjecture due to Bollobás and Eldridge and, independently, Catlin, asserts that if (Δ(G1) + 1)(Δ(G2) + 1) ⩽ n + 1, then G1 and G2 pack. We consider the validity of this assertion under the additional assumption that G1 or G2 has bounded codegree. In particular, we prove for all t ⩾ 2 that if G1 contains no copy of the complete bipartite graph K2,t and Δ(G1) > 17t · Δ(G2), then (Δ(G1) + 1)(Δ(G2) + 1) ⩽ n + 1 implies that G1 and G2 pack. We also provide a mild improvement if moreover G2 contains no copy of the complete tripartite graph K1,1,s, s ⩾ 1.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Packing Graphs of Bounded Codegree
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Packing Graphs of Bounded Codegree
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Packing Graphs of Bounded Codegree
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Footnotes

Hide All

Supported by NWO grant 613.001.217.

Supported by a NWO Vidi grant (639.032.614).

Footnotes

References

Hide All
[1] Aigner, M. and Brandt, S. (1993) Embedding arbitrary graphs of maximum degree two. J. London Math. Soc. (2) 48 3951.
[2] Bollobás, B. and Eldridge, S. E. (1978) Packings of graphs and applications to computational complexity. J. Combin. Theory Ser. B 25 105124.
[3] Bollobás, B., Janson, S. and Scott, A. (2017) Packing random graphs and hypergraphs. Random Struct. Alg. 51 313.
[4] Bollobás, B., Kostochka, A. and Nakprasit, K. (2005) On two conjectures on packing of graphs. Combin. Probab. Comput. 14 723736.
[5] Bollobás, B., Kostochka, A. and Nakprasit, K. (2008) Packing d-degenerate graphs. J. Combin. Theory Ser. B 98 8594.
[6] Catlin, P. A. (1974) Subgraphs of graphs I. Discrete Math. 10 225233.
[7] Catlin, P. A. (1976) Embedding subgraphs and coloring graphs under extremal degree conditions. PhD thesis, The Ohio State University. ProQuest LLC, Ann Arbor, MI.
[8] Corrádi, K. (1969) Problem at Schweitzer competition. Mat. Lapok 20 159162.
[9] Csaba, B. (2007) On the Bollobás–Eldridge conjecture for bipartite graphs. Combin. Probab. Comput. 16 661691.
[10] Csaba, B., Shokoufandeh, A. and Szemerédi, E. (2003) Proof of a conjecture of Bollobás and Eldridge for graphs of maximum degree three. Combinatorica 23 3572.
[11] Eaton, N. (2000) A near packing of two graphs. J. Combin. Theory Ser. B 80 98103.
[12] Hajnal, A. and Szemerédi, E. (1970) Proof of a conjecture of P. Erdős. In Combinatorial Theory and its Applications II: (Proc. Colloq., Balatonfüred, 1969), North-Holland, pp. 601–623.
[13] Johansson, A. (1996) Asymptotic choice number for triangle-free graphs. Technical report 91-5, DIMACS.
[14] Kaul, H. and Kostochka, A. (2007) Extremal graphs for a graph packing theorem of Sauer and Spencer. Combin. Probab. Comput. 16 409416.
[15] Kaul, H., Kostochka, A. and Yu, G. (2008) On a graph packing conjecture by Bollobás, Eldridge and Catlin. Combinatorica 28 469485.
[16] Molloy, M. and Reed, B. (2002) Graph Colouring and the Probabilistic Method, Vol. 23 of Algorithms and Combinatorics, Springer.
[17] Sauer, N. and Spencer, J. (1978) Edge disjoint placement of graphs. J. Combin. Theory Ser. B 25 295302.

MSC classification

Packing Graphs of Bounded Codegree

  • WOUTER CAMES VAN BATENBURG (a1) and ROSS J. KANG (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed