Two graphs G1 and G2 on n vertices are said to pack if there exist injective mappings of their vertex sets into [n] such that the images of their edge sets are disjoint. A longstanding conjecture due to Bollobás and Eldridge and, independently, Catlin, asserts that if (Δ(G1) + 1)(Δ(G2) + 1) ⩽ n + 1, then G1 and G2 pack. We consider the validity of this assertion under the additional assumption that G1 or G2 has bounded codegree. In particular, we prove for all t ⩾ 2 that if G1 contains no copy of the complete bipartite graph K2,t and Δ(G1) > 17t · Δ(G2), then (Δ(G1) + 1)(Δ(G2) + 1) ⩽ n + 1 implies that G1 and G2 pack. We also provide a mild improvement if moreover G2 contains no copy of the complete tripartite graph K1,1,s, s ⩾ 1.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.
To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.