Skip to main content Accessibility help
×
Home

On Statistics of Permutations Chosen From the Ewens Distribution

  • TATJANA BAKSHAJEVA (a1) and EUGENIJUS MANSTAVIČIUS (a2)

Abstract

We explore the asymptotic distributions of sequences of integer-valued additive functions defined on the symmetric group endowed with the Ewens probability measure as the order of the group increases. Applying the method of factorial moments, we establish necessary and sufficient conditions for the weak convergence of distributions to discrete laws. More attention is paid to the Poisson limit distribution. The particular case of the number-of-cycles function is analysed in more detail. The results can be applied to statistics defined on random permutation matrices.

Copyright

References

Hide All
[1]Arous, G. B. and Dang, K. (2011) On fluctuations of eigenvalues of random permutation matrices. arXiv:1106.2108v1
[2]Arratia, R.Barbour, A. D. and Tavaré, S. (2003) Logarithmic Combinatorial Structures: A Proba-bilistic Approach, EMS, Zürich.
[3]Barbour, A. D. and Granovsky, B. L. (2005) Random combinatorial structures: The convergent case J. Combin. Theory Ser. A 109 203220.
[4]Betz, V. and Ueltschi, D. (2009) Spatial random permutations and infinite cycles Commun. Math. Phys. 285 469501.
[5]Betz, V. and Ueltschi, D. (2011) Spatial random permutations with small cycle weights Probab. Theory. Rel. Fields 149 191222.
[6]Betz, V. and Ueltschi, D. (2011) Spatial random permutations and Poisson–Dirichlet law of cycle lengths Electron. J. Probab. 16 11731192.
[7]Betz, V., Ueltschi, D. and Velenik, Y. (2011) Random permutations with cycle weights Ann. Appl. Probab. 21 312331.
[8]Bogdanas, K. and Manstavičius, E. (2012) Stochastic processes on weakly logarithmic assemblies. In Analytic and Probabilistic Methods in Number Theory 5 (Laurinčikas, A.et al., eds), Kubilius Memorial Volume, TEV, Vilnius, pp. 6980.
[9]Ercolani, N. M. and Ueltschi, D. (2014) Cycle structure of random permutations with cycle weights Random Struct. Alg. 44 109133.
[10]Erdős, P. and Turén, P. (1965) On some problems of a statistical group theory I Z. Wahrsch. Verw. Gebiete 4 175186.
[11]Flajolet, P. and Sedgewick, R. (2008) Analytic Combinatorics, Cambridge University Press.
[12]Hambly, B., Keevash, P., O'Connell, N. and Stark, D. (2000) The characteristic polynomial of a random permutation matrix Stoch. Process. Appl. 90 335346.
[13]Hughes, C., Najnudel, J., Nikeghball, A. and Zeindler, D. (2013) Random permutation matrices under the genereralized Ewens measure Ann. Appl. Probab. 23 9871024.
[14]Kargina, T. (2007) Additive functions on permutations and the Ewens probability Šiauliai Math. Semin. 10 3341.
[15]Kargina, T. (2009) Asymptotic distributions of the number of restricted cycles in a random per-mutation Lietuvos matem. rink. Proc. LMS 50 420425.
[16]Kargina, T. and Manstavičius, E. (2012) Multiplicative functions on Z+n and the Ewens Sampling Formula RIMS Kôkyûroku Bessatsu B34 137151.
[17]Kargina, T. and Manstavičius, E. (2013) The law of large numbers with respect to Ewens probability. Ann. Univ. Sci. Budapest., Sect. Comp. 39 227238.
[18]Lugo, M. (2009) Profiles of permutations Electron. J. Combin. 16 120.
[19]Lugo, M. (2009) The number of cycles of specified normalized length in permutations. arXiv:0909.2909vI
[20]Manstavičius, E. (1996) Additive and multiplicative functions on random permutations Lith. Math. J. 36 400408.
[21]Manstavičius, E. (2002) Mappings on decomposable combinatorial structures: Analytic approach Combin. Probab. Comput. 11 6178.
[22]Manstavičius, E. (2002) Functional limit theorem for sequences of mappings on the symmetric group. In Analytic and Probabilistic Methods in Number Theory 3 (Laurinčikas, A.et al., eds), TEV, Vilnius, pp. 175187.
[23]Manstavičius, E. (2005) The Poisson distribution for the linear statistics on random permutations Lith. Math. J. 45 434446.
[24]Manstavičius, E. (2005) Discrete limit laws for additive functions on the symmetric group Acta Math. Univ. Ostraviensis 13 4755.
[25]Manstavičius, E. (2008) Asymptotic value distribution of additive function defined on the symmetric group Ramanujan J. 17 259280.
[26]Manstavičius, E. (2009) An analytic method in probabilistic combinatorics Osaka J. Math. 46 273290.
[27]Manstavičius, E. (2011) A limit theorem for additive functions defined on the symmetric group Lith. Math. J. 51 211237.
[28]Manstavičius, E. (2012) On total variation approximations for random assemblies. In 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms: AofA'12, DMTCS Proc., pp. 97–108.
[29]Šiaulys, J. (1996) Convergence to the Poisson law II: Unbounded strongly additive functions. Lith. Math. J. 36 393404.
[30]Šiaulys, J. (1998) Convergence to the Poisson law III: Method of moments. Lith. Math. J. 38 374390.
[31]Šiaulys, J. (2000) Factorial moments of distributions of additive functions Lith. Math. J. 40 389508.
[32]Šiaulys, J. and Stepanauskas, G. (2008) Some limit laws for strongly additive prime indicators Šiauliai Math. Semin. 3 235246.
[33]Šiaulys, J. and Stepanauskas, G. (2011) Binomial limit law for additive prime indicators Lith. Math. J. 51 562572.
[34]Wieand, K. L. (2000) Eigenvalue distributions of random permutation matrices Ann. Probab. 28 15631587.
[35]Wieand, K. L. (2003) Permutation matrices, wreath products, and the distribution of eigenvalues J. Theoret. Probab. 16 599623.
[36]Zacharovas, V. (2002) The convergence rate to the normal law of a certain variable defined on random polynomials Lith. Math. J. 42 88107.
[37]Zacharovas, V. (2004) Distribution of the logarithm of the order of a random permutation Lith. Math. J. 44 296327.
[38]Zacharovas, V. (2011) Voronoi summation formulae and multiplicative functions on permutations Ramanujan J. 24 289329.
[39]Zeindler, D. (2010) Permutation matrices and the moments of their characteristic polynomial Electron. J. Probab. 15 10921118.

Keywords

Related content

Powered by UNSILO

On Statistics of Permutations Chosen From the Ewens Distribution

  • TATJANA BAKSHAJEVA (a1) and EUGENIJUS MANSTAVIČIUS (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.