[1]Arous, G. B. and Dang, K. (2011) On fluctuations of eigenvalues of random permutation matrices. arXiv:1106.2108v1

[2]Arratia, R.Barbour, A. D. and Tavaré, S. (2003) *Logarithmic Combinatorial Structures: A Proba-bilistic Approach*, EMS, Zürich.

[3]Barbour, A. D. and Granovsky, B. L. (2005) Random combinatorial structures: The convergent case J. Combin. Theory Ser. A 109 203–220.

[4]Betz, V. and Ueltschi, D. (2009) Spatial random permutations and infinite cycles Commun. Math. Phys. 285 469–501.

[5]Betz, V. and Ueltschi, D. (2011) Spatial random permutations with small cycle weights Probab. Theory. Rel. Fields 149 191–222.

[6]Betz, V. and Ueltschi, D. (2011) Spatial random permutations and Poisson–Dirichlet law of cycle lengths Electron. J. Probab. 16 1173–1192.

[7]Betz, V., Ueltschi, D. and Velenik, Y. (2011) Random permutations with cycle weights Ann. Appl. Probab. 21 312–331.

[8]Bogdanas, K. and Manstavičius, E. (2012) Stochastic processes on weakly logarithmic assemblies. In Analytic and Probabilistic Methods in Number Theory 5 (Laurinčikas, A.et al., eds), *Kubilius Memorial Volume*, TEV, Vilnius, pp. 69–80.

[9]Ercolani, N. M. and Ueltschi, D. (2014) Cycle structure of random permutations with cycle weights Random Struct. Alg. 44 109–133.

[10]Erdős, P. and Turén, P. (1965) On some problems of a statistical group theory I Z. Wahrsch. Verw. Gebiete 4 175–186.

[11]Flajolet, P. and Sedgewick, R. (2008) Analytic Combinatorics, Cambridge University Press.

[12]Hambly, B., Keevash, P., O'Connell, N. and Stark, D. (2000) The characteristic polynomial of a random permutation matrix Stoch. Process. Appl. 90 335–346.

[13]Hughes, C., Najnudel, J., Nikeghball, A. and Zeindler, D. (2013) Random permutation matrices under the genereralized Ewens measure Ann. Appl. Probab. 23 987–1024.

[14]Kargina, T. (2007) Additive functions on permutations and the Ewens probability Šiauliai Math. Semin. 10 33–41.

[15]Kargina, T. (2009) Asymptotic distributions of the number of restricted cycles in a random per-mutation Lietuvos matem. rink. Proc. LMS 50 420–425.

[16]Kargina, T. and Manstavičius, E. (2012) Multiplicative functions on Z_{+}^{n} and the Ewens Sampling Formula RIMS Kôkyûroku Bessatsu B34 137–151.

[17]Kargina, T. and Manstavičius, E. (2013) The law of large numbers with respect to Ewens probability. Ann. Univ. Sci. Budapest., Sect. Comp. 39 227–238.

[18]Lugo, M. (2009) Profiles of permutations Electron. J. Combin. 16 1–20.

[19]Lugo, M. (2009) The number of cycles of specified normalized length in permutations. arXiv:0909.2909vI

[20]Manstavičius, E. (1996) Additive and multiplicative functions on random permutations Lith. Math. J. 36 400–408.

[21]Manstavičius, E. (2002) Mappings on decomposable combinatorial structures: Analytic approach Combin. Probab. Comput. 11 61–78.

[22]Manstavičius, E. (2002) Functional limit theorem for sequences of mappings on the symmetric group. In Analytic and Probabilistic Methods in Number Theory 3 (Laurinčikas, A.et al., eds), TEV, Vilnius, pp. 175–187.

[23]Manstavičius, E. (2005) The Poisson distribution for the linear statistics on random permutations Lith. Math. J. 45 434–446.

[24]Manstavičius, E. (2005) Discrete limit laws for additive functions on the symmetric group Acta Math. Univ. Ostraviensis 13 47–55.

[25]Manstavičius, E. (2008) Asymptotic value distribution of additive function defined on the symmetric group Ramanujan J. 17 259–280.

[26]Manstavičius, E. (2009) An analytic method in probabilistic combinatorics Osaka J. Math. 46 273–290.

[27]Manstavičius, E. (2011) A limit theorem for additive functions defined on the symmetric group Lith. Math. J. 51 211–237.

[28]Manstavičius, E. (2012) On total variation approximations for random assemblies. In *23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms: AofA'12*, DMTCS Proc., pp. 97–108.

[29]Šiaulys, J. (1996) Convergence to the Poisson law II: Unbounded strongly additive functions. Lith. Math. J. 36 393–404.

[30]Šiaulys, J. (1998) Convergence to the Poisson law III: Method of moments. Lith. Math. J. 38 374–390.

[31]Šiaulys, J. (2000) Factorial moments of distributions of additive functions Lith. Math. J. 40 389–508.

[32]Šiaulys, J. and Stepanauskas, G. (2008) Some limit laws for strongly additive prime indicators Šiauliai Math. Semin. 3 235–246.

[33]Šiaulys, J. and Stepanauskas, G. (2011) Binomial limit law for additive prime indicators Lith. Math. J. 51 562–572.

[34]Wieand, K. L. (2000) Eigenvalue distributions of random permutation matrices Ann. Probab. 28 1563–1587.

[35]Wieand, K. L. (2003) Permutation matrices, wreath products, and the distribution of eigenvalues J. Theoret. Probab. 16 599–623.

[36]Zacharovas, V. (2002) The convergence rate to the normal law of a certain variable defined on random polynomials Lith. Math. J. 42 88–107.

[37]Zacharovas, V. (2004) Distribution of the logarithm of the order of a random permutation Lith. Math. J. 44 296–327.

[38]Zacharovas, V. (2011) Voronoi summation formulae and multiplicative functions on permutations Ramanujan J. 24 289–329.

[39]Zeindler, D. (2010) Permutation matrices and the moments of their characteristic polynomial Electron. J. Probab. 15 1092–1118.