[1]Alekseev, M. A., Glebskiĭ, L. Y. and Gordon, E. I. (1999) On approximations of groups, group actions and Hopf algebras. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 256 224–262.

[2]Alon, N., Fischer, E. and Newman, I. (2007) Efficient testing of bipartite graphs for forbidden induced subgraphs. SIAM J. Comput. 37 959–976.

[3]Alon, N., Fox, J. and Zhao, Y. (2019) Efficient arithmetic regularity and removal lemmas for induced bipartite patterns. Discrete Anal., Paper no. 3, 14 MR3943117.

[4]Babai, L., Goodman, A. J. and Pyber, L. (1997) Groups without faithful transitive permutation representations of small degree. J. Algebra 195 1–29.

[5]Bogolioùboff, N. (1939) Sur quelques propriétés arithmétiques des presque-périodes. Ann. Chaire Phys. Math. Kiev 4 185–205.

[6]Bourgain, J. (1999) On triples in arithmetic progression. Geom. Funct. Anal. 9 968–984.

[7]Breuillard, E., Green, B. and Tao, T. (2012) The structure of approximate groups. Publ. Math. Inst. Hautes Études Sci. 116 115–221.

[8]Collins, M. J. (2007) On Jordan’s theorem for complex linear groups. J. Group Theory 10 411–423.

[9]Conant, G., Pillay, A. and Terry, C. (2020) A group version of stable regularity. Math. Proc. Cambridge Philos. Soc., (2) 168 405–413. MR4064112.

[10]Conant, G., Pillay, A. and Terry, C. (2018) Structure and regularity for subsets of groups with finite VC-dimension.arXiv:1802.04246

[11]Croot, E. and Sisask, O. (2010) A probabilistic technique for finding almost-periods of convolutions. Geom. Funct. Anal. 20 1367–1396.

[12]Freman, G. A. (1973) Foundations of a Structural Theory of Set Addition, Vol. 37 of Translations of Mathematical Monographs, AMS.

[13]Freiman, G. A. (1987) What is the structure of *K* if *K*+*K* is small? In Number Theory (New York, 1984–1985), Vol. 1240 of Lecture Notes in Mathematics, pp. 109–134, Springer.

[14]Gowers, W. T. (2008) Quasirandom groups. Combin. Probab. Comput. 17 363–387.

[15]Green, B. (2005) A Szemerédi-type regularity lemma in abelian groups, with applications. Geom. Funct. Anal. 15 340–376.

[16]Green, B. and Ruzsa, I. Z. (2007) Freiman’s theorem in an arbitrary abelian group. J. London Math. Soc. (2) 75 163–175.

[17]Haussler, D. (1995) Sphere packing numbers for subsets of the Boolean *n*-cube with bounded Vapnik–Chervonenkis dimension. J. Combin. Theory Ser. A 69 217–232.

[18]Helfgott, H. A. (2008) Growth and generation in *SL* _{2}(*Z*/*pZ*). Ann. of Math. (2) 167 601–623.

[19]Hrushovski, E. (2012) Stable group theory and approximate subgroups. J. Amer. Math. Soc. 25 189–243.

[20]Hrushovski, E., Peterzil, Y. and Pillay, A. (2008) Groups, measures, and the NIP. J. Amer. Math. Soc. 21 563–596.

[21]Keisler, H. J. (1964) Ultraproducts and saturated models. Nederl. Akad. Wetensch. Proc. Ser. A 67 = Indag. Math. 26 178–186.

[22]Krupiński, K. and Pillay, A. (2016) Amenability, definable groups, and automorphism groups. Adv. Math. 345 1253–1299. MR3904280.

[23]Malliaris, M. and Shelah, S. (2014) Regularity lemmas for stable graphs. Trans. Amer. Math. Soc. 366 1551–1585.

[24]Massicot, J.-C. and Wagner, F. O. (2015) Approximate subgroups. J. École Polytech. Math. 2 55–64.

[25]Nikolov, N. and Pyber, L. (2011) Product decompositions of quasirandom groups and a Jordan type theorem. J. Eur. Math. Soc. 13 1063–1077.

[26]Nikolov, N., Schneider, J. and Thom, A. (2018) Some remarks on finitarily approximable groups. J. École Polytech. Math. 5 239–258.

[27]Pillay, A. (2004) Type-definability, compact Lie groups, and o-minimality. J. Math. Log. 4 147–162.

[28]Pillay, A. (2017) Remarks on compactifications of pseudofinite groups. Fund. Math. 236 193–200.

[29]Plünnecke, H. (1969) Eigenschaften und Abschätzungen von Wirkungsfunktionen, BMwF-GMD-22, Gesellschaft für Mathematik und Datenverarbeitung.

[30]Ruzsa, I. Z. (1994) Generalized arithmetical progressions and sumsets. Acta Math. Hungar. 65 379–388.

[31]Ruzsa, I. Z. (1996) Sums of finite sets. In Number Theory (New York, 1991–1995), pp. 281–293, Springer.

[32]Sanders, T. (2010) On a nonabelian Balog–Szemerédi-type lemma. J. Aust. Math. Soc. 89 127–132.

[33]Sanders, T. (2012) On the Bogolyubov–Ruzsa lemma. Anal. PDE 5 627–655.

[34]Sisask, O. (2018) Convolutions of sets with bounded VC-dimension are uniformly continuous.arXiv:1802.02836

[35]Tao, T. (2008) Product set estimates for non-commutative groups. Combinatorica 28 547–594.

[36]Tao, T. (2014) Hilbert’s Fifth Problem and Related Topics, Vol. 153 of Graduate Studies in Mathematics, AMS.

[37]Tao, T. and Vu, V. (2006) Additive Combinatorics, Vol. 105 of Cambridge Studies in AdvancedMathematics, Cambridge University Press.

[38]Terry, C. and Wolf, J. (2019) Stable arithmetic regularity in the finite field model. Bull. Lond. Math. Soc. 51 70–88.

[39]Terry, C. and Wolf, J. (2018) Quantitative structure of stable sets in finite abelian groups. Trans. Amer. Math. Soc. accepted.