[1]Alon, N., Kim, J. and Spencer, J. (1997) Nearly perfect matchings in regular simple hypergraphs. Israel J. Math. 100 171–187.
[2]Bohman, T. (2009) The triangle-free process. Adv. Math. 221 1653–1677.
[3]Bohman, T., Frieze, A. and Lubetzky, E. (2010) A note on the random greedy triangle packing algorithm. J. Combin. 1 477–488.
[4]Bohman, T., Frieze, A. and Lubetzky, E. (2015) Random triangle removal. Adv. Math. 280 379–438.
[5]Bohman, T. and Picollelli, M. (2012) Evolution of SIR epidemics on random graphs with a fixed degree sequence. Random Struct. Alg. 41 179–214.
[6]Erd˝os, P. and Hanani, H. (1963) On a limit theorem in combinatorial analysis. Publ. Math. Debrecen 10 10–13.
[7]Grable, D. (1997) On random greedy triangle packing. Electron. J. Combin. 4 R11.
[8]Kostochka, A. and Rödl, V. (1998) Partial Steiner systems and matchings in hypergraphs. Random Struct. Alg. 13 335–347.
[9]Pippenger, N. and Spencer, J. (1989) Asymptotic behavior of the chromatic index for hypergraphs. J. Combin. Theory Ser. A 51 24–42.
[10]Rödl, V. (1985) On a packing and covering problem. European J. Combin. 6 69–78.
[11]Rödl, V. and Thoma, L. (1996) Asymptotic packing and the random greedy algorithm. Random Struct. Alg. 8 161–177.
[12]Spencer, J. (1995) Asymptotic packing via a branching process. Random Struct. Alg. 7 167–172.
[13]Telcs, A., Wormald, N. and Zhou, S. (2007) Hamiltonicity of random graphs produced by 2-processes. Random Struct. Alg. 31 450–481.
[14]Vu, V. (2000) New bounds on nearly perfect matchings in hypergraphs: Higher codegrees do help. Random Struct. Alg. 17 29–63.
[15]Wormald, N. (1999) The differential equation method for random graph processes and greedy algorithms. In Lectures on Approximation and Randomized Algorithms (Karonski, M. and Prömel, H. J., eds), PWN, pp. 73–155.