Skip to main content Accessibility help
×
Home

Expansion of Percolation Critical Points for Hamming Graphs

  • Lorenzo Federico (a1), Remco Van Der Hofstad (a2), Frank Den Hollander (a3) and Tim Hulshof (a2)

Abstract

The Hamming graph H(d, n) is the Cartesian product of d complete graphs on n vertices. Let ${m=d(n-1)}$ be the degree and $V = n^d$ be the number of vertices of H(d, n). Let $p_c^{(d)}$ be the critical point for bond percolation on H(d, n). We show that, for $d \in \mathbb{N}$ fixed and $n \to \infty$ ,

$$p_c^{(d)} = {1 \over m} + {{2{d^2} - 1} \over {2{{(d - 1)}^2}}}{1 \over {{m^2}}} + O({m^{ - 3}}) + O({m^{ - 1}}{V^{ - 1/3}}),$$
which extends the asymptotics found in [10] by one order. The term $O(m^{-1}V^{-1/3})$ is the width of the critical window. For $d=4,5,6$ we have $m^{-3} = O(m^{-1}V^{-1/3})$ , and so the above formula represents the full asymptotic expansion of $p_c^{(d)}$ . In [16] we show that this formula is a crucial ingredient in the study of critical bond percolation on H(d, n) for $d=2,3,4$ . The proof uses a lace expansion for the upper bound and a novel comparison with a branching random walk for the lower bound. The proof of the lower bound also yields a refined asymptotics for the susceptibility of a subcritical Erdös–Rényi random graph.

Copyright

Corresponding author

*Corresponding author. Email: Lorenzo.Federico@warwick.ac.uk

References

Hide All
[1]Aizenman, M. and Barsky, D. J. (1987) Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108 489526.
[2]Aizenman, M. and Newman, C. M. (1984) Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36 107143.
[3]Aldous, D. (1997) Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 812854.
[4]van den Berg, J. and Kesten, H. (1985) Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 556569.
[5]Bhamidi, S., van der Hofstad, R. and van Leeuwaarden, J. S. H. (2010) Scaling limits for critical inhomogeneous random graphs with finite third moments. Electron. J. Probab. 15 16821703.
[6]Bhamidi, S., van der Hofstad, R. and van Leeuwaarden, J. S. H. (2012) Novel scaling limits for critical inhomogeneous random graphs. Ann. Probab. 40 22992361.
[7]Bollobás, B. (1984) The evolution of random graphs. Trans. Amer. Math. Soc. 286 257274.
[8]Bollobás, B. (2001) Random Graphs, second edition, Vol. 73 of Cambridge Studies in Advanced Mathematics, Cambridge University Press.
[9]Borgs, C., Chayes, J., van der Hofstad, R., Slade, G. and Spencer, J. (2005) Random subgraphs of finite graphs, I: The scaling window under the triangle condition. Random Struct. Alg. 27 137184.
[10]Borgs, C., Chayes, J., van der Hofstad, R., Slade, G. and Spencer, J. (2005) Random subgraphs of finite graphs, II: The lace expansion and the triangle condition. Ann. Probab. 33 18861944.
[11]Borgs, C., Chayes, J., van der Hofstad, R., Slade, G. and Spencer, J. (2006) Random subgraphs of finite graphs, III: The phase transition for the n-cube. Combinatorica 26 395410.
[12]Brydges, D. and Spencer, T. (1985) Self-avoiding walk in 5 or more dimensions. Comm. Math. Phys. 97 125148.
[13]Durrett, R. (2007) Random Graph Dynamics, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.
[14]Erdős, P. and Rényi, A. (1959) On random graphs, I. Publ. Math. Debrecen 6 290297.
[15]Erdős, P. and Spencer, J. (1979) Evolution of the n-cube. Comput. Math. Appl. 5 3339.
[16]Federico, L., van der Hofstad, R., den Hollander, F. and Hulshof, T. (2019) The scaling limit for critical percolation on the Hamming graph. In preparation.
[17]Federico, L., van der Hofstad, R. and Hulshof, T. (2016) Connectivity threshold for random subgraphs of the Hamming graph. Electron. Commun. Probab., 21 #27.
[18]Fitzner, R. and van der Hofstad, R. (2013) Non-backtracking random walk. J. Statist. Phys. 150 264284.
[19]Grimmett, G. (1999) Percolation, second edition, Springer.
[20]Grimmett, G. (2012) Percolation and disordered systems. In Percolation Theory at Saint-Flour, Springer, pp. 141303.
[21]Hara, T. and Slade, G. (1990) Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128 333391.
[22]Heydenreich, M. and van der Hofstad, R. (2017) Progress in High-Dimensional Percolation and Random Graphs, CMR Short Courses, Springer.
[23]van der Hofstad, R. (2017) Random Graphs and Complex Networks, Vol. 1, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.
[24]van der Hofstad, R. and Luczak, M. J. (2010) Random subgraphs of the 2D Hamming graph: The supercritical phase. Probab. Theory Related Fields 147 141.
[25]van der Hofstad, R., Luczak, M. J. and Spencer, J. (2010) The second largest component in the supercritical 2D Hamming graph. Random Struct. Alg. 36 8089.
[26]van der Hofstad, R. and Nachmias, A. (2014) Unlacing hypercube percolation: A survey. Metrika 77 2350.
[27]van der Hofstad, R. and Nachmias, A. (2017) Hypercube percolation. J. Eur. Math. Soc. 19 725814.
[28]van der Hofstad, R. and Slade, G. (2005) Asymptotic expansions in $n^{-1}$ for percolation critical values on the n-cube and ${\mathbb Z}^n$. Random Struct. Alg. 27 331357.
[29]van der Hofstad, R. and Slade, G. (2006) Expansion in $n^{-1}$ for percolation critical values on the n-cube and ${\mathbb Z}^n$: The first three terms. Combin. Probab. Comput. 15 695713.
[30]Janson, S., Knuth, D., Łuczak, T. and Pittel, B. (1993) The birth of the giant component. Random Struct. Alg. 4 231358.
[31]Janson, S. and Warnke, L. (2018) On the critical probability in percolation. Electron. J. Probab. 23 #1.
[32]Joseph, A. (2014) The component sizes of a critical random graph with given degree sequence. Ann. Appl. Probab. 24 25602594.
[33]Łuczak, T., Pittel, B. and Wierman, J. C. (1994) The structure of a random graph at the point of the phase transition. Trans. Amer. Math. Soc. 341 721748.
[34]Menshikov, M. V. (1986) Coincidence of critical points in percolation problems. Soviet Math. Doklady 33 856859.
[35]Miłoś, P. and Şengül, B. (2019) Existence of a phase transition of the interchange process on the Hamming graph. Electronic J. Probab. 24 64.
[36]Nachmias, A. and Peres, Y. (2007) Component sizes of the random graph outside the scaling window. ALEA Lat. Am. J. Probab. Math. Stat. 3 133142.
[37]Nachmias, A. and Peres, Y. (2008) Critical random graphs: Diameter and mixing time. Ann. Probab. 36 12671286.
[38]Nachmias, A. and Peres, Y. (2010) Critical percolation on random regular graphs. Random Struct. Alg. 36 111148.
[39]Pakes, A. G. (1971) Some limit theorems for the total progeny of a branching process. Adv. Appl. Probab. 3 176192.
[40]Pittel, B. (2001) On the largest component of the random graph at a nearcritical stage. J. Combin. Theory Ser. B 82 237269.
[41]Ráth, B. (2018) A moment-generating formula for Erdős–Rényi component sizes. Electron. Commun. Probab. 23 #24.
[42]Russo, L. (1981) On the critical percolation probabilities. Z. Wahrsch. Verw. Gebiete 56 229237.

MSC classification

Expansion of Percolation Critical Points for Hamming Graphs

  • Lorenzo Federico (a1), Remco Van Der Hofstad (a2), Frank Den Hollander (a3) and Tim Hulshof (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed