[1]
Bohman, T., Frieze, A., Krivelevich, M. and Martin, R. (2004) Adding random edges to dense graphs.
Random Struct. Alg.
24
105–117.

[2]
Bohman, T., Frieze, A. and Martin, R. (2003) How many random edges make a dense graph Hamiltonian?
Random Struct. Alg.
22
33–42.

[3]
Bondy, J. (1975) Pancyclic graphs: Recent results. In Infinite and Finite Sets: To Paul Erdős on his 60th Birthday, Vol. 1 (Hajnal, A., Rado, R. and Sós, V. T., eds), Vol. 10 of *Colloquia Mathematica Societatis János Bolyai*, North-Holland, pp. 181–187.

[4]
Dirac, G. A. (1952) Some theorems on abstract graphs.
Proc. London Math. Soc.
3
69–81.

[5]
Dudek, A. and Frieze, A. (2011) Loose Hamilton cycles in random uniform hypergraphs. Electron. J. Combin.
18 #48.

[6]
Frieze, A. and Krivelevich, M. (2005) On packing Hamilton cycles in ϵ-regular graphs.
J. Combin. Theory Ser. B
94
159–172.

[7]
Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Cambridge University Press.

[8]
Johansson, A., Kahn, J. and Vu, V. (2008) Factors in random graphs.
Random Struct. Alg.
33
1–28.

[9]
Karp, R. M. (1972) Reducibility among combinatorial problems. In Complexity of Computer Computations (Miller, R. E. and Thatcher, J. W., eds), Plenum, pp. 85–104.

[10]
Keevash, P., Kühn, D., Mycroft, R. and Osthus, D. (2011) Loose Hamilton cycles in hypergraphs.
Discrete Math.
311
544–559.

[11]
Komlós, J. and Simonovits, M. (1996) Szemerédi's Regularity Lemma and its applications in graph theory. In Combinatorics: Paul Erdős is Eighty (Miklós, D., Sós, V., and Szőnyi, T., eds.), Vol. 2 of *Bolyai Society Mathematical Studies*, János Bolyai Mathematical Society, pp. 295–352.

[12]
Korshunov, A. D. (1976) Solution of a problem of Erdős and Rényi on Hamilton cycles in nonoriented graphs.
Soviet Math. Doklady
17
760–764.

[13]
Krivelevich, M., Sudakov, B. and Tetali, P. (2006) On smoothed analysis in dense graphs and formulas.
Random Struct. Alg.
29
180–193.

[14]
Kühn, D., Lapinskas, J., Osthus, D. and Patel, V. (2014) Proof of a conjecture of Thomassen on Hamilton cycles in highly connected tournaments.
Proc. London Math. Soc.
109
733–762.

[15]
Łuczak, T., Ruciński, A. and Gruszka, J. (1996) On the evolution of a random tournament.
Discrete Math.
148
311–316.

[16]
Moon, J. (1968) Topics on Tournaments, Holt, Rinehart and Winston.

[17]
Moon, J. and Moser, L. (1962) Almost all tournaments are irreducible.
Canadian Math. Bulletin
5
61–65.

[18]
Pokrovskiy, A. (2014) Edge disjoint Hamiltonian cycles in highly connected tournaments. *Int. Math. Res. Not.* To appear.

[19]
Pósa, L. (1976) Hamiltonian circuits in random graphs.
Discrete Math.
14
359–364.

[20]
Rödl, V. and Ruciński, A. (2010) Dirac-type questions for hypergraphs: A survey (or more problems for Endre to solve). In An Irregular Mind: Szemerédi is 70 (Bárány, I. and Solymosi, J., eds), Vol. 21 of *Bolyai Society Mathematical Studies*, Springer and János Bolyai Mathematical Society, pp. 561–590.

[21]
Spielman, D. A. and Teng, S.-H. (2003) Smoothed analysis: Motivation and discrete models. In Algorithms and Data Structures: 8th International Workshop, WADS 2003 (Dehne, F., Sack, J. R., and Smid, M., eds), Vol. 2748 of *Lecture Notes in Computer Science*, Springer, pp. 256–270.

[22]
Spielman, D. A. and Teng, S.-H. (2004) Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time.
J. Assoc. Comput. Mach.
51
385–463.

[23]
Tao, T. (2006) Szemerédi's Regularity Lemma revisited.
Contrib. Discrete Math.
1
8–28.