[1]Abramowitz, M. and Stegun, I. A. (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Vol. 55 of National Bureau of Standards Applied Mathematics Series, US Government Printing Office.
[2]Devroye, L. (1992) A note on the probabilistic analysis of PATRICIA trees. Random Struct. Alg. 3 203–214.
[3]Devroye, L. (2002) Laws of large numbers and tail inequalities for random tries and PATRICIA trees. J. Comput. Appl. Math. 142 27–37.
[4]Devroye, L. (2005) Universal asymptotics for random tries and PATRICIA trees. Algorithmica 42 11–29.
[5]Drmota, M., Krattenthaler, C. and Pogudin, G. (2017) Problem 11997, The Amer. Math. Monthly, vol. 124, number 7, p. 660.
[6]Drmota, M., Magner, A. and Szpankowski, W. (2016) Asymmetric Rényi problem and PATRICIA tries. In 27th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms.
[7]Drmota, M., Magner, A. and Szpankowski, W. (2017) Asymmetric Rényi problem. arXiv:1711.01528
[8]Drmota, M. and Szpankowski, W. (2011) The expected profile of digital search trees. J. Combin. Theory Ser. A 118 1939–1965.
[9]Flajolet, P., Gourdon, X. and Dumas, P. (1995) Mellin transforms and asymptotics: Harmonic sums. Theoret. Comput. Sci. 144 3–58.
[10]Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.
[11]Jacquet, P. and Szpankowski, W. (1998) Analytical depoissonization and its applications. Theoret. Comput. Sci. 201 1–62.
[12]Janson, S. and Szpankowski, W. (1997) Analysis of an asymmetric leader election algorithm. Electron. J. Combin. 4 #R17.
[13]Kazemi, R. and Vahidi-Asl, M. (2011) The variance of the profile in digital search trees. Discrete Math. Theoret. Comput. Sci. 13 21–38.
[14]Knuth, D. E. (1998) The Art of Computer Programming, Vol. 3: Sorting and Searching, second edition, Addison Wesley Longman.
[15]Magner, A. (2015) Profiles of PATRICIA tries. PhD thesis, Purdue University.
[16]Magner, A., Knessl, C. and Szpankowski, W. (2014) Expected external profile of PATRICIA tries. In Eleventh Workshop on Analytic Algorithmics and Combinatorics, SIAM, pp. 16–24.
[17]Magner, A. and Szpankowski, W. (2016) Profiles of PATRICIA tries. Algorithmica 76 1–67.
[18]Park, G., Hwang, H.-K., Nicodème, P. and Szpankowski, W. (2009) Profiles of tries. SIAM J. Comput. 38 1821–1880.
[19]Pittel, B. (1985) Asymptotic growth of a class of random trees. Ann. Probab. 18 414–427.
[20]Pittel, B. and Rubin, H. (1990) How many random questions are needed to identify n distinct objects? J. Combin. Theory Ser. A 55 292–312.
[21]Rényi, A. (1961) On random subsets of a finite set. Mathematica 3 355–362.
[22]Szpankowski, W. (1990) PATRICIA tries again revisited. J. Assoc. Comput. Mach. 37 691–711.
[23]Szpankowski, W. (2001) Average Case Analysis of Algorithms on Sequences, Wiley.