Home
Hostname: page-component-684bc48f8b-68png Total loading time: 0.375 Render date: 2021-04-12T23:26:43.212Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

# Edge Colouring with Delays

Published online by Cambridge University Press:  01 March 2007

Corresponding

## Abstract

Consider the following communication problem, which leads to a new notion of edge colouring. The communication network is represented by a bipartite multigraph, where the nodes on one side are the transmitters and the nodes on the other side are the receivers. The edges correspond to messages, and every edge e is associated with an integer c(e), corresponding to the time it takes the message to reach its destination. A proper k-edge-colouring with delays is a function f from the edges to {0, 1, . . ., k − 1}, such that, for every two edges e1 and e2 with the same transmitter, f(e1) ≠ f(e2), and for every two edges e1 and e2 with the same receiver, f(e1) + c(e1) ≢ f(e2) + c(e2) (mod k). Ross, Bambos, Kumaran, Saniee and Widjaja [18] conjectured that there always exists a proper edge colouring with delays using k = Δ + o(Δ) colours, where Δ is the maximum degree of the graph. Haxell, Wilfong and Winkler [11] conjectured that a stronger result holds: k = Δ + 1 colours always suffice. We prove the weaker conjecture for simple bipartite graphs, using a probabilistic approach, and further show that the stronger conjectureholds for some multigraphs, applying algebraic tools.

Type
Paper
Information
Combinatorics, Probability and Computing , March 2007 , pp. 173 - 191

## Access options

Get access to the full version of this content by using one of the access options below.

## References

[1]Alon, N. (1991) A parallel algorithmic version of the Local Lemma. Random Struct. Alg. 2 367378.CrossRefGoogle Scholar
[2]Alon, N. (1993) Restricted colorings of graphs. In Surveys in Combinatorics: Proc. 14th British Combinatorial Conference, London (Walker, K., ed.), Vol. 187 of Mathematical Society Lecture Notes Series, Cambridge University Press, pp. 1–33.CrossRefGoogle Scholar
[3]Alon, N. (1999) Combinatorial Nullstellensatz. Combin. Probab. Comput. 8 729.CrossRefGoogle Scholar
[4]Alon, N. and Spencer,, J. H. (2000) The Probabilistic Method, 2nd edn, Wiley.CrossRefGoogle Scholar
[5]Beck, J. (1991) An algorithmic approach to the Lovász Local Lemma. Random Struct. Alg. 2 343365.CrossRefGoogle Scholar
[6]Czumaj, A. and Scheideler, C. (2000) Coloring nonuniform hypergraphs: A new algorithmic approach to the general Lovász Local Lemma. Random Struct. Alg. 17 213237.3.0.CO;2-Y>CrossRefGoogle Scholar
[7]Ellingham, M. N. and Goddyn, L. (1996) List edge colourings of some 1-factorable multigraphs. Combinatorica 16 343352.CrossRefGoogle Scholar
[8]Häggkvist, R. and Janssen, J. (1997) New bounds on the list chromatic index of the complete graph and other simple graphs. Combin. Probab. Comput. 6 273295.CrossRefGoogle Scholar
[9]Hall, M. (1952) A combinatorial problem on abelian groups. Proc. Amer. Math. Soc. 3 584587.CrossRefGoogle Scholar
[10]Haxell, P. E. (2001) A note on vertex list colouring. Combin. Probab. Comput. 10 345348.CrossRefGoogle Scholar
[11]Haxell, P. E., Wilfong, G. T. and Winkler, P. Delay coloring and optical networks. To appear.Google Scholar
[12]Kahn, J. (1996) Asymptotically good list-colorings. J. Combin. Theory Ser. A 73 159.CrossRefGoogle Scholar
[13]Molloy, M. and Reed, B. (1998) Further algorithmic aspects of the Local Lemma. In Proc. 30th Annual ACM Symposium on Theory of Computing, pp. 524–529.Google Scholar
[14]Molloy, M. and Reed, B. (2000) Near-optimal list colorings. Random Struct. Alg. 17 376402.3.0.CO;2-0>CrossRefGoogle Scholar
[15]Molloy, M. and Reed, B. (2001) Graph Colouring and the Probabilistic Method, Springer.Google Scholar
[16]Reed, B. (1999) The list colouring constants. J. Graph Theory 31 149153.3.0.CO;2-#>CrossRefGoogle Scholar
[17]Reed, B. and Sudakov, B. (2002) Asymptotically the list colouring constants are 1. J. Combin. Theory Ser. B 86 2737.CrossRefGoogle Scholar
[18]Ross, K., Bambos, N., Kumaran, K., Saniee, I. and Widjaja, I. (2003) Scheduling bursts in time-domain wavelength interleaved networks. IEEE JSAC OCN 21 14411451.Google Scholar
[19]Widjaja, I., Saniee, I., Giles, R. and Mitra, D. (2003) Light core and intelligent edge for a flexible, thin-layered and cost-effective optical transport network. IEEE Optical Communications 1(2); IEEE Communications Magazine 45(5) 31–36.CrossRefGoogle Scholar

### Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 17 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 12th April 2021. This data will be updated every 24 hours.

# Send article to Kindle

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Edge Colouring with Delays
Available formats
×

# Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Edge Colouring with Delays
Available formats
×

# Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Edge Colouring with Delays
Available formats
×
×