Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-rz424 Total loading time: 0.295 Render date: 2021-03-04T20:01:38.562Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Convexity Property of Discrete Random Walks

Published online by Cambridge University Press:  31 March 2016

GÁBOR V. NAGY
Affiliation:
Bolyai Institute, University of Szeged, Szeged, Aradi v. tere 1, 6720, Hungary (e-mail: ngaba@math.u-szeged.hu)
VILMOS TOTIK
Affiliation:
MTA-SZTE Analysis and Stochastics Research Group, Bolyai Institute, University of Szeged, Szeged, Aradi v. tere 1, 6720, Hungary and Department of Mathematics and Statistics, University of South Florida, 4202 E. Fowler Ave, CMC342, Tampa, FL 33620-5700, USA (e-mail: totik@mail.usf.edu)
Corresponding

Abstract

We establish a convexity property for the hitting probabilities of discrete random walks in ${\mathbb Z}^d$ (discrete harmonic measures). For d = 2 this implies a recent result on the convexity of the density of certain harmonic measures.

Type
Paper
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Armitage, D. H. and Gardiner, S. J. (2002) Classical Potential Theory, Springer.Google Scholar
[2] Benko, D., Dragnev, P. and Totik, V. (2012) Convexity of harmonic densities. Rev. Mat. Iberoam. 28 114.CrossRefGoogle Scholar
[3] Billingsley, P. (1968) Convergence of Probability Measures, Wiley.Google Scholar
[4] Courant, R., Friedrichs, K. and Lewy, H. (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100 3274.CrossRefGoogle Scholar
[5] Doob, J. L. (1984) Classical Potential Theory and its Probabilistic Counterpart, Springer.CrossRefGoogle Scholar
[6] Garnett, J. B. and Marshall, D. E. (2005) Harmonic Measure, New Mathematical Monographs, Cambridge University Press.CrossRefGoogle Scholar
[7] Guy, R. K., Krattenthaler, C. and Sagan, B. E. (1992) Lattice paths, reflections, and dimension-changing bijections. Ars Combin. 34 315.Google Scholar
[8] Kallenberg, O. (1997) Foundations of Modern Probability, Probability and Its Applications, Springer.Google Scholar
[9] Port, S. C. and Stone, C. J. (1978) Brownian Motion and Classical Potential Theory, Probability and Mathematical Statistics, Academic.Google Scholar
[10] Ransford, T. (1995) Potential Theory in the Complex Plane, Cambridge University Press.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 70 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Convexity Property of Discrete Random Walks
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Convexity Property of Discrete Random Walks
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Convexity Property of Discrete Random Walks
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *