Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-92xsl Total loading time: 0.407 Render date: 2021-04-21T19:58:54.325Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Analysis of the Binary Asymmetric Joint Sparse Form

Published online by Cambridge University Press:  14 July 2014

CLEMENS HEUBERGER
Affiliation:
Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65–67, 9020 Klagenfurt am Wörthersee, Austria and Institut für Optimierung und Diskrete Mathematik (Math B), TU Graz, Steyrergasse 30, 8010 Graz, Austria (e-mail: clemens.heuberger@aau.at)
SARA KROPF
Affiliation:
Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee, Austria (e-mail: sara.kropf@aau.at)
Corresponding

Abstract

We consider redundant binary joint digital expansions of integer vectors. The redundancy is used to minimize the Hamming weight, i.e., the number of non-zero digit vectors. This leads to efficient linear combination algorithms in abelian groups, which are used in elliptic curve cryptography, for instance.

If the digit set is a set of contiguous integers containing zero, a special syntactical condition is known to minimize the weight. We analyse the optimal weight of all non-negative integer vectors with maximum entry less than N. The expectation and the variance are given with a main term and a periodic fluctuation in the second-order term. Finally, we prove asymptotic normality.

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Avanzi, R. M. (2005) A note on the signed sliding window integer recoding and a left-to-right analogue. In Selected Areas in Cryptography (Handschuh, H. and Hasan, A., eds), Vol. 3357 of Lecture Notes in Computer Science, Springer, pp. 130143.Google Scholar
[2]Barat, G. and Grabner, P. J. (2001) Distribution of binomial coefficients and digital functions. J. London Math. Soc. (2) 64 523547.CrossRefGoogle Scholar
[3]Flajolet, P., Grabner, P., Kirschenhofer, P., Prodinger, H. and Tichy, R. F. (1994) Mellin transforms and asymptotics: Digital sums. Theoret. Comput. Sci. 123 291314.CrossRefGoogle Scholar
[4]Grabner, P. and Thuswaldner, J. (2000) On the sum of digits function for number systems with negative bases. Ramanujan J. 4 201220.CrossRefGoogle Scholar
[5]Grabner, P. J., Heuberger, C. and Prodinger, H. (2004) Distribution results for low-weight binary representations for pairs of integers. Theoret. Comput. Sci. 319 307331.CrossRefGoogle Scholar
[6]Heuberger, C. and Muir, J. A. (2006) Minimal weight and colexicographically minimal integer representations: Online resources. http://www.math.tugraz.at/~cheub/publications/colexi/.Google Scholar
[7]Heuberger, C. and Muir, J. A. (2007) Minimal weight and colexicographically minimal integer representations. J. Math. Cryptol. 1 297328.CrossRefGoogle Scholar
[8]Muir, J. A. and Stinson, D. R. (2006) Minimality and other properties of the width-w nonadjacent form. Math. Comp. 75 369384.CrossRefGoogle Scholar
[9]Straus, E. (1964) Addition chains of vectors (problem 5125). Amer. Math. Monthly 71 806808.Google Scholar
[10]Tenenbaum, G. (1997) Sur la non-dérivabilité de fonctions périodiques associées à certaines formules sommatoires. In The Mathematics of Paul Erdős I, Vol. 13 of of Algorithms Combin., Springer, pp. 117128.CrossRefGoogle Scholar
[11]Vaaler, J. D. (1985) Some extremal functions in Fourier analysis. Bull. Amer. Math. Soc. (NS) 12 183216.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 31 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Analysis of the Binary Asymmetric Joint Sparse Form
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Analysis of the Binary Asymmetric Joint Sparse Form
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Analysis of the Binary Asymmetric Joint Sparse Form
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *