Skip to main content Accessibility help
×
Home

UGT1A1 mutations and psychoses: towards understanding the relationship with unconjugated bilirubin

  • Angela Bentivegna (a1) (a2), Jacopo Santambrogio (a1) (a3) and Massimo Clerici (a1) (a2)
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      UGT1A1 mutations and psychoses: towards understanding the relationship with unconjugated bilirubin
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      UGT1A1 mutations and psychoses: towards understanding the relationship with unconjugated bilirubin
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      UGT1A1 mutations and psychoses: towards understanding the relationship with unconjugated bilirubin
      Available formats
      ×

Abstract

Copyright

Corresponding author

*Address correspondence to: Angela Bentivegna, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy. (Email: angela.bentivegna@unimib.it)

Footnotes

Hide All

A. Bentivegna and J. Santambrogio contributed equally.

Footnotes

References

Hide All
1. Pommerening Dornelles, E, Gama Marques, J, Ouakinin, S. Unconjugated bilirubin and schizophrenia: a systematic review. CNS Spectr. 2019; 27: 112.
2. Servedio, V, d’Apolito, M, Maiorano, N, et al. Spectrum of UGT1A1 mutations in Crigler-Najjar (CN) syndrome patients: identification of twelve novel alleles and genotype-phenotype correlation. Hum Mutat. 2005; 25(3): 325.
3. Bosma, PJ, Chowdhury, JR, Bakker, C, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995; 333(18): 11711175.
4. Ciotti, M, Chen, F, Rubaltelli, FF, Owens, IS. Coding defect and a TATA box mutation at the bilirubin UDP-glucuronosyltransferase gene cause Crigler-Najjar type I disease. Biochim Biophys Acta. 1998; 1407(1): 4050.
5. Kadakol, A, Ghosh, SS, Sappal, BS, Sharma, G, Chowdhury, JR, Chowdhury, NR. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler-Najjar and Gilbert syndromes: correlation of genotype to phenotype. Hum Mutat. 2000; 16(4): 297306.
6. Li, L, Deng, G, Tang, Y, Mao, Q. Spectrum of UGT1A1 variations in Chinese patients with Crigler-Najjar syndrome type II. PLoS One. 2015; 10(5): e0126263.
7. Abuduxikuer, K, Fang, LJ, Li, LT, Gong, JY, Wang, JS. UGT1A1 genotypes and unconjugated hyperbilirubinemia phenotypes in post-neonatal Chinese children: a retrospective analysis and quantitative correlation. Medicine (Baltimore). 2018; 97(49): e13576.
8. Koziol, LF, Budding, DE, Chidekel, D. Hyperbilirubinemia: subcortical mechanisms of cognitive and behavioral dysfunction. Pediatr Neurol. 2013; 48(1): 313.
9. Meller, W, Welle, N, Sutley, K, Thurber, S. Depression and liver transplant survival. Psychosomatics. 2017; 58(1): 6468.
10. Jin, SG, Yan, LN, Xiang, B, et al. Posttraumatic stress disorder after liver transplantation. Hepatobiliary Pancreat Dis Int. 2012; 11(1): 2833.
11. Vieta, E, De Pablo, J, Cirera, E, Grande, L, Rimola, A. Rapidly cycling bipolar II disorder following liver transplantation. General Hospital Psychiatry. 1993; 15: 129131
12. Semnani, Y, Nazemi, F, Azariyam, A, Ardakani, MJ. Alteration of serum bilirubin level in schizophrenia. Int J Psychiatry Clin Pract. 2010; 14(4): 262267.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed