Skip to main content Accessibility help
×
Home

Peripheral levels of superoxide dismutase and glutathione peroxidase in youths in ultra-high risk for psychosis: a pilot study

  • Maiara Zeni-Graiff (a1), Adiel C. Rios (a1), Pawan K. Maurya (a1) (a2), Lucas B. Rizzo (a1), Sumit Sethi (a1), Ana S. Yamagata (a1), Rodrigo B. Mansur (a3) (a4), Pedro M. Pan (a5) (a6), Elson Asevedo (a1) (a5) (a6), Graccielle R. Cunha (a1) (a5) (a6), André Zugman (a1) (a5) (a6), Rodrigo A. Bressan (a1) (a5) (a6), Ary Gadelha (a1) (a5) (a6) and Elisa Brietzke (a1) (a3) (a7)...

Abstract

Introduction

Oxidative stress has been documented in chronic schizophrenia and in the first episode of psychosis, but there are very little data on oxidative stress prior to the disease onset.

Objective

This work aimed to compare serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in young individuals at ultra-high risk (UHR) of developing psychosis with a comparison healthy control group (HC).

Methods

Thirteen UHR subjects and 29 age- and sex-matched healthy controls (HC) were enrolled in this study. Clinical assessment included the Comprehensive Assessment of At-Risk Mental States (CAARMS), the Semi-Structured Clinical Interview for DSM-IV Axis-I (SCID-I) or the Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), and the Global Assessment of Functioning (GAF) scale. Activities of SOD and GPx were measured in serum by the spectrophotometric method using enzyme-linked immunosorbent assay kits.

Results

After adjusting for age and years of education, there was a significant lower activity of SOD and lower GPX activity in the UHR group compared to the healthy control group (rate ratio [RR]=0.330, 95% CI 0.187; 0.584, p<0.001 and RR=0.509, 95% CI 0.323; 0.803, p=0.004, respectively). There were also positive correlations between GAF functioning scores and GPx and SOD activities.

Conclusion

Our results suggest that oxidative imbalances could be present prior to the onset of full-blown psychosis, including in at-risk stages. Future studies should replicate and expand these results.

Copyright

Corresponding author

*Address for correspondence: Elisa Brietzke, Department of Psychiatry, Universidade Federal de São Paulo, Rua Borges Lagoa, 570- 1o andar, São Paulo, SP, Brazil. (Email: elisabrietze@hotmail.com)

Footnotes

Hide All

Maiara Zeni-Graiff and Adiel C. Rios contributed equally and are qualified as first authors.

Footnotes

References

Hide All
1. Zeni-Graiff, M, Rizzo, LB, Mansur, RB, et al. Peripheral immuno-inflammatory abnormalities in ultra-high risk of developing psychosis. Schizophr Res. 2016; 176(2–3): 191195.
2. Perez, VB, Swerdlow, NR, Braff, DL, Näätänen, R, Light, GA. Using biomarkers to inform diagnosis, guide treatments and track response to interventions in psychotic illnesses. Biomark Med. 2014; 8(1): 914.
3. Labad, J, Stojanovic-Pérez, A, Montalvo, I, et al. Stress biomarkers as predictors of transition to psychosis in at-risk mental states: roles for cortisol, prolactina and albumin. J Psychiatr Res. 2015; 60: 163169.
4. Fusar-Poli, P, Cappucciati, M, Borgwardt, S, et al. Heterogeneity of psychosis risk within individuals at clinical high risk: a meta-analytical stratification. JAMA Psychiatry. 2016; 73(2): 113120.
5. Coughlin, JM, Hayes, LN, Tanaka, T, et al. Reduced superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with early psychosis in association with clinical features. Schizophr Res. 2017; 183: 6469.
6. Koga, M, Serritella, AV, Sawa, A, Sedlak, TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res. 2016; 176(1): 5271.
7. Magalhaes, PV, Dean, O, Andreazza, AC, Berk, M, Kapczinski, F. Antioxidant treatments for schizophrenia. Cochrane Database Syst Rev. 2016; 2: CD008919.
8. Gonzalez-Liencres, C, Tas, C, Brown, EC, et al. Oxidative stress in schizophrenia: a case-control study on the effects on social cognition and neurocognition. BMC Psychiatry. 2014; 14: 268.
9. Vidovic, B, Milovanovic, S, Dordevic, B, et al. Effect of alpha-lipoic acid supplementation on oxidative stress markers and antioxidative defense in patients with schizophrenia. Psychiatr Danub. 2014; 26(3): 205213.
10. Zhang, XY, Chen, DC, Tan, YL, et al. The interplay between BDNF and oxidative stress in chronic schizophrenia. Psychoneuroendocrinology. 2015; 51: 201208.
11. Noto, C, Ota, VK, Gadelha, A, et al. Oxidative stress in drug naive first episode psychosis and antioxidant effects of risperidone. J Psychiatr Res. 2015; 68: 210216.
12. Wu, JQ, Kosten, TR, Zhang, XY. Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 46: 200206.
13. Pedrini, M, Massuda, R, Fries, GR, et al. Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res. 2012; 46(6): 819824.
14. Rizvi, SI, Maurya, PK. Markers of oxidative stress in erythrocytes during aging in humans. Ann N Y Acad Sci. 2007; 1100: 373382.
15. Dietrich-Muszalska, A, Kontek, B. Lipid peroxidation in patients with schizophrenia. Psychiatry Clin Neurosci. 2010; 64(5): 469475.
16. Smesny, S, Milleit, B, Schaefer, MR, et al. Effects of omega-3 PUFA on the vitamin E and glutathione antioxidant defense system in individuals at ultra-high risk of psychosis. Prostaglandins Leukot Essent Fatty Acids. 2015; 101: 1521.
17. Brietzke, E, Araripe Neto, AG, Dias, A, Mansur, RB, Bressan, RA. Early intervention in psychosis: a map of clinical and research initiatives in Latin America. Rev Bras Psiquiatr. 2011; 33(Suppl 2): 213224.
18. Castro, J, Zanini, M, Gonçalves Bda, S, Coelho, FM, Bressan, R, Bittencourt, L, Gadelha, A, Brietzke, E, Tufik, S. Circadian rest-activity rhythm in individuals at risk for psychosis and bipolar disorder. Schizophr Res. 2015; 168(1–2): 5055.
19. Yung, AR, Yuen, HP, McGorry, PD, et al. Mapping the onset of psychosis: the Comprehensive Assessment of At-Risk Mental States. Aust N Z J Psychiatry. 2005; 39(11–12): 964971.
20. Nordholm, D, Poulsen, HE, Hjorthøj, C, et al. Systemic oxidative DNA and RNA damage are not increased during early phases of psychosis: a case control study. Psychiatry Res. 2016; 241: 201206.
21. Flatow, J, Buckley, P, Miller, BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013; 74(6): 400409.
22. Martínez-Cengotitabengoa, M, Mac-Dowell, KS, Leza, JC, et al. Cognitive impairment is related to oxidative stress and chemokine levels in first psychotic episodes. Schizophr Res. 2012; 137(1–3): 6672.
23. Raffa, M, Atig, F, Mhalla, A, Kerkeni, A, Mechri, A. Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry. 2011; 11: 124.
24. Micó, JA, Rojas-Corrales, MO, Gibert-Rahola, J, et al. Reduced antioxidant defense in early onset first-episode psychosis: a case-control study. BMC Psychiatry. 2011; 11: 26.
25. Mansur, RB, Santos, CM, Rizzo, LB, Cunha, GR, Asevedo, E, Noto, MN, Pedrini, M, Zeni, M, Cordeiro, Q, McIntyre, RS, Brietzke, E. Inter-relation between brain-derived neurotrophic factor and antioxidant enzymes in bipolar disorder. Bipolar Disord. 2016; 18(5): 433439.
26. Gong, Y, Zhao, R, Yang, B. Superoxide dismutase activity and malondialdehyde levels in patients with travel-induced psychosis. Shanghai Arch Psychiatry. 2012; 24(3): 155161.
27. Sarandol, A, Sarandol, E, Acikgoz, HE, Eker, SS, Akkaya, C, Dirican, M. First-episode psychosis is associated with oxidative stress: Effects of short-term antipsychotic treatment. Psychiatry Clin Neurosci. 2015; 69(11): 699707.
28. Zhang, XY, Zhou, DF, Cao, LY, Zhang, PY, Wu, GY, Shen, YC. The effect of risperidone treatment on superoxide dismutase in schizophrenia. J Clin Psychopharmacol. 2003; 23(2): 128131.
29. Perkins, DO, Gu, H, Boteva, K, Lieberman, JA. Relationship between duration of untreated psychosis and outcome in first-episode schizophrenia: a critical review and meta-analysis. Am J Psychiatry. 2005; 162(10): 17851804.
30. Killackey, E, Yung, AR. Effectiveness of early intervention in psychosis. Curr Opin Psychiatry. 2007; 20(2): 121125.
31. Fusar-Poli, P, Bonoldi, I, Yung, AR, et al. Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012; 69(3): 220229.
32. Cannon, TD, Cadenhead, K, Cornblatt, B, et al. Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch Gen Psychiatry. 2008; 65(1): 2837.
33. McGorry, PD, Nelson, B, Amminger, GP, et al. Intervention in individuals at ultra-high risk for psychosis: a review and future directions. J Clin Psychiatry. 2009; 70(9): 12061212.
34. Fusar-Poli, P, Carpenter, WT, Woods, SW, McGlashan, TH. Attenuated psychosis syndrome: ready for DSM-5.1? Annu Rev Clin Psychol. 2014; 10: 155192.
35. Tsuang, MT, Van Os, J, Tandon, R, et al. Attenuated psychosis syndrome in DSM-5. Schizophr Res. 2013; 150(1): 3135.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed