Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T11:31:52.330Z Has data issue: false hasContentIssue false

Correlations between peripheral levels of inflammatory mediators and frontolimbic structures in bipolar disorder: an exploratory analysis

Published online by Cambridge University Press:  14 June 2021

Satyajit Mohite
Affiliation:
Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, Texas, USA Department of Psychiatry and Psychology, Mayo Clinic Health System, Mankato, Minnesota, USA
Haitham Salem
Affiliation:
Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, Texas, USA
Thiago Cordeiro
Affiliation:
Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, Texas, USA
Jonika Tannous
Affiliation:
Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, Texas, USA
Benson Mwangi
Affiliation:
Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, Texas, USA
Sudhakar Selvaraj
Affiliation:
Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, Texas, USA
Jair C. Soares
Affiliation:
Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, Texas, USA
Marsal Sanches*
Affiliation:
Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, Texas, USA
Antonio L. Teixeira
Affiliation:
Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, Texas, USA
*
*Author for correspondence: Marsal Sanches, MD, PhD Email: Marsal.Sanches@uth.tmc.edu

Abstract

Background

Altered peripheral immune/inflammatory system and brain volumetric changes have been implicated in the pathophysiology of bipolar disorder (BD). This study aimed to evaluate how peripheral levels of cytokines are related to volumetric brain changes in euthymic patients with BD.

Methods

Euthymic patients with BD (n = 21) and healthy controls (n = 22) were enrolled in this exploratory study. Blood samples were collected on the same day of clinical assessment and neuroimaging. Cytokines were measured through cytometric bead array method. Neuroimaging data were acquired using a sagittal three-dimensional magnetic resonance imaging T1-weighted fast field echo sequence and was processed using FreeSurfer.

Results

Compared to controls, BD patients had significantly lower volumes in the cingulate, medial-orbitofrontal (MOF) and parahippocampal regions. We found a negative correlation between right MOF volume and interferon-gamma levels (β = −0.431, P = .049) and a positive correlation between interleukin-10 levels and left posterior cingulate volume (β = 0.457, P = .048).

Conclusion

Our results support the involvement of inflammatory pathways in structural brain changes in BD.

Type
Original Research
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mühleisen, TW, Leber, M, Schulze, TG, et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun. 2014;5(1):18.CrossRefGoogle ScholarPubMed
Lichtenstein, P, Yip, BH, Björk, C, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009;373(9659):234239.CrossRefGoogle ScholarPubMed
Vieta, E, Berk, M, Schulze, TG, et al. Bipolar disorders. Nat Rev Dis Primers. 2018;4(1):116.CrossRefGoogle ScholarPubMed
Lima, IM, Peckham, AD, Johnson, SL. Cognitive deficits in bipolar disorders: implications for emotion. Clin Psychol Rev. 2018;59:126136.CrossRefGoogle ScholarPubMed
Chen, M, Fitzgerald, HM, Madera, JJ, Tohen, M. Functional outcome assessment in bipolar disorder: a systematic literature review. Bipolar Disord. 2019;21(3):194214.CrossRefGoogle ScholarPubMed
Fries, GR, Walss-Bass, C, Bauer, ME, Teixeira, AL. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav. 2019;177:1219.CrossRefGoogle ScholarPubMed
Rosenblat, JD, Gregory, JM, Flor-Henry, S, McIntyre, RS. Inflammation in bipolar disorder. Inflam Immun Depress. 2018;445454.CrossRefGoogle Scholar
Giridharan, VV, Sayana, P, Pinjari, OF, et al. Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry. 2020;25:120.CrossRefGoogle ScholarPubMed
Muneer, A. Bipolar disorder: role of inflammation and the development of disease biomarkers. Psychiatry Invest. 2016;13(1):18.CrossRefGoogle Scholar
Munkholm, K, Vinberg, M, Kessing, LV. Cytokines in bipolar disorder: a systematic review and meta-analysis. J Affect Disord. 2013;144(1–2):1627.CrossRefGoogle ScholarPubMed
Hatch, JK, Scola, G, Olowoyeye, O, et al. Inflammatory markers and brain-derived neurotrophic factor as potential bridges linking bipolar disorder and cardiovascular risk among adolescents. J Clin Psychiatry. 2017;78(3):e286e293.CrossRefGoogle ScholarPubMed
Barbosa, IG, Vaz, GN, Rocha, NP, et al. Plasma levels of tumor necrosis factor superfamily molecules are increased in bipolar disorder. Clin Psychopharmacol Neurosci. 2017;15(3):269.CrossRefGoogle ScholarPubMed
Barbosa, IG, de Almeida Ferreira, R, Rocha, NP, et al. Predictors of cognitive performance in bipolar disorder: the role of educational degree and inflammatory markers. J Psychiatr Res. 2018;106:3137.CrossRefGoogle ScholarPubMed
van den Ameele, S, Coppens, V, Schuermans, J, et al. Neurotrophic and inflammatory markers in bipolar disorder: a prospective study. Psychoneuroendocrinology. 2017;84:143150.CrossRefGoogle ScholarPubMed
Kunz, M, Ceresér, KM, Goi, PD, et al. Serum levels of IL-6, IL-10 and TNF-α in patients with bipolar disorder and schizophrenia: differences in pro-and anti-inflammatory balance. Brazilian J Psychiatry. 2011;33(3):268274.Google ScholarPubMed
Du, M-Y, Wu, Q-Z, Yue, Q, et al. Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Progr Neuro-Psychopharmacol Biol Psychiatry. 2012;36(1):1116.CrossRefGoogle ScholarPubMed
Ganzola, R, Duchesne, S. Voxel‐based morphometry meta‐analysis of gray and white matter finds significant areas of differences in bipolar patients from healthy controls. Bipolar Disord. 2017;19(2):7483.CrossRefGoogle ScholarPubMed
Hibar, D, Westlye, LT, Doan, NT, et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23(4):932942.CrossRefGoogle ScholarPubMed
Chen, M-H, Chang, W-C, Hsu, J-W, et al. Correlation of proinflammatory cytokines levels and reduced gray matter volumes between patients with bipolar disorder and unipolar depression. J Affect Disord. 2019;245:815.CrossRefGoogle ScholarPubMed
Selvaraj, S, Arnone, D, Job, D, et al. Grey matter differences in bipolar disorder: a meta‐analysis of voxel‐based morphometry studies. Bipolar Disord. 2012;14(2):135145.CrossRefGoogle ScholarPubMed
Bora, E, Fornito, A, Yücel, M, Pantelis, C. Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry. 2010;67(11):10971105.CrossRefGoogle ScholarPubMed
Wise, T, Radua, J, Via, E, et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol Psychiatry. 2017;22(10):14551463.CrossRefGoogle ScholarPubMed
Sarıçiçek, A, Yalın, N, Hıdıroğlu, C, et al. Neuroanatomical correlates of genetic risk for bipolar disorder: a voxel-based morphometry study in bipolar type I patients and healthy first degree relatives. J Affect Disord. 2015;186:110118.CrossRefGoogle ScholarPubMed
Mathew, I, Gardin, TM, Tandon, N, et al. Medial temporal lobe structures and hippocampal subfields in psychotic disorders: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. JAMA Psychiatry. 2014;71(7):769777.CrossRefGoogle ScholarPubMed
Shi, J, Guo, H, Fan, F, et al. Sex differences of hippocampal structure in bipolar disorder. Psychiatry Res Neuroimag. 2018;273:3541.CrossRefGoogle ScholarPubMed
Hibar, D, Westlye, LT, van Erp, TG, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry. 2016;21(12):17101716.CrossRefGoogle ScholarPubMed
Warren, KN, Beason-Held, LL, Carlson, O, et al. Elevated markers of inflammation are associated with longitudinal changes in brain function in older adults. J Gerontol A. 2018;73(6):770778.CrossRefGoogle Scholar
Benedetti, F, Aggio, V, Pratesi, ML, Greco, G, Furlan, R. Neuroinflammation in bipolar depression. Front Psychiatry. 2020;11:71.CrossRefGoogle ScholarPubMed
First, MB. Structured clinical interview for the DSM (SCID). Encyclopedia Clin Psychol. 2014;16.Google Scholar
Carson, N, Leach, L, Murphy, KJ. A re‐examination of Montreal Cognitive Assessment (MoCA) cutoff scores. Int J Geriatr Psychiatry. 2018;33(2):379388.CrossRefGoogle ScholarPubMed
Dale, AM, Fischl, B, Sereno, MI. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179194.CrossRefGoogle ScholarPubMed
Fischl, B, Salat, DH, Busa, E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341355.CrossRefGoogle ScholarPubMed
Jovicich, J, Czanner, S, Greve, D, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage. 2006;30(2):436443.CrossRefGoogle ScholarPubMed
Fischl, B, Van Der Kouwe, A, Destrieux, C, et al. Automatically parcellating the human cerebral cortex. Cerebral Cortex. 2004;14(1):1122.CrossRefGoogle ScholarPubMed
StataCorp, L. Stata statistical software. Release 13; 2013.Google Scholar
Spss, I. IBM SPSS Statistics for Windows, Version 20.0. New York: IBM Corp; 2011:440.Google Scholar
Goldsmith, D, Rapaport, M, Miller, BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):16961709.CrossRefGoogle ScholarPubMed
Mechawar, N, Savitz, J. Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry. 2016;6(11):e946e946.CrossRefGoogle ScholarPubMed
Miller, AH, Raison, CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22.CrossRefGoogle Scholar
Brietzke, E, Stertz, L, Fernandes, BS, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord. 2009;116(3):214217.CrossRefGoogle ScholarPubMed
Munkholm, K, Braüner, JV, Kessing, LV, Vinberg, M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res. 2013;47(9):11191133.CrossRefGoogle ScholarPubMed
Hayes, J, Khandaker, G, Anderson, J, et al. Childhood interleukin-6, C-reactive protein and atopic disorders as risk factors for hypomanic symptoms in young adulthood: a longitudinal birth cohort study. Psychol Med. 2017;47(1):2333.CrossRefGoogle ScholarPubMed
Sanches, M, Soares, JC. Brain imaging abnormalities in bipolar disorder. In: Young, AH, Soares, JC, eds. Bipolar Disorders: Basic Mechanisms and Therapeutic Implications. 3rd ed. Cambridge: Cambridge University Press; 2016:102110.CrossRefGoogle Scholar
Teixeira, AL, Colpo, GD, Fries, GR, Bauer, IE, Selvaraj, S. Biomarkers for bipolar disorder: current status and challenges ahead. Expert Rev Neurotherapeut. 2019;19(1):6781.CrossRefGoogle ScholarPubMed
Bai, Y-M, Chen, M-H, Hsu, J-W, et al. A comparison study of metabolic profiles, immunity, and brain gray matter volumes between patients with bipolar disorder and depressive disorder. J Neuroinflam. 2020;17(1):42.CrossRefGoogle ScholarPubMed
Kauer-Sant’Anna, M, Kapczinski, F, Andreazza, AC, et al. Brain-derived neurotrophic factor and inflammatory markers in patients with early-vs. late-stage bipolar disorder. Int J Neuropsychopharmacol. 2009;12(4):447458.CrossRefGoogle ScholarPubMed
Brunoni, AR, Supasitthumrong, T, Teixeira, AL, et al. Differences in the immune-inflammatory profiles of unipolar and bipolar depression. J Affect Disord. 2020;262:815.CrossRefGoogle ScholarPubMed
Leech, R, Braga, R, Sharp, DJ. Echoes of the brain within the posterior cingulate cortex. J Neurosci. 2012;32(1):215222.CrossRefGoogle ScholarPubMed
Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain’s default network: anatomy, function, and relevance to disease; 2008.CrossRefGoogle Scholar
Leech, R, Sharp, DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(1):1232.CrossRefGoogle ScholarPubMed
Castaño-Ramírez, OM, Sepúlveda-Arias, JC, Duica, K, Zuluaga, AMD, Vargas, C, López-Jaramillo, C. Inflammatory markers in the staging of bipolar disorder: a systematic review of the literature. Revista Colombiana Psiquiatría (English ed.). 2018;47(2):119128.CrossRefGoogle ScholarPubMed
Altinay, M, Karne, H, Anand, A. Lithium monotherapy associated clinical improvement effects on amygdala-ventromedial prefrontal cortex resting state connectivity in bipolar disorder. J Affect Disord. 2018;225:412.CrossRefGoogle ScholarPubMed
Nassar, A, Azab, AN. Effects of lithium on inflammation. ACS Chem Neurosci. 2014;5(6):451458.CrossRefGoogle ScholarPubMed
Köhler, C, Freitas, T, Md, M, et al. Peripheral cytokine and chemokine alterations in depression: a meta‐analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373387.CrossRefGoogle ScholarPubMed
McDonald, C. Brain structural effects of psychopharmacological treatment in bipolar disorder. Curr Neuropharmacol. 2015;13(4):445457.CrossRefGoogle ScholarPubMed
Fountoulakis, KN, Giannakopoulos, P, Kövari, E, Bouras, C. Assessing the role of cingulate cortex in bipolar disorder: neuropathological, structural and functional imaging data. Brain Res Rev. 2008;59(1):921.CrossRefGoogle ScholarPubMed