Skip to main content Accessibility help
×
Home

Altered brain functional networks in Internet gaming disorder: independent component and graph theoretical analysis under a probability discounting task

  • Ziliang Wang (a1), Xiaoyue Liu (a2), Yanbo Hu (a3), Hui Zheng (a1), Xiaoxia Du (a4) and Guangheng Dong (a1) (a5)...

Abstract

Objectives

Internet gaming disorder (IGD) is becoming a matter of concern around the world. However, the neural mechanism underlying IGD remains unclear. The purpose of this paper is to explore the differences between the neuronal network of IGD participants and that of recreational Internet game users (RGU).

Methods

Imaging and behavioral data were collected from 18 IGD participants and 20 RGU under a probability discounting task. The independent component analysis (ICA) and graph theoretical analysis (GTA) were used to analyze the data.

Results

Behavioral results showed the IGD participants, compared to RGU, prefer risky options to the fixed ones and spent less time in making risky decisions. In imaging results, the ICA analysis revealed that the IGD participants showed stronger functional connectivity (FC) in reward circuits and executive control network, as well as lower FC in anterior salience network (ASN) than RGU; for the GTA results, the IGD participants showed impaired FC in reward circuits and ASN when compared with RGU.

Conclusions

These results suggest that IGD participants were more sensitive to rewards, and they were more impulsive in decision-making as they could not control their impulsivity effectively. This might explain why IGD participants cannot stop their gaming behaviors even when facing severe negative consequences.

Copyright

Corresponding author

*Address correspondence to: Guangheng Dong, Ph.D., Professor, Department of Psychology, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang Province 311121, China. (Email: dongguangheng@zjnu.edu.cn)

Footnotes

Hide All

Ziliang Wang and Xiaoyue Liu contributed equally. Ziliang Wang and Xiaoyue Liu analyzed the data and wrote the first draft of the manuscript. Hui Zheng contributed to experimental programming and data preprocessing. Xiaoxia Du contributed to fMRI data collection. Guangheng Dong and Yanbo Hu designed the research and revised and improved the manuscript. All authors contributed to and had approved the final manuscript.

Footnotes

References

Hide All
1.Petry, NM, Rehbein, F, Gentile, DA, et al. An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction. 2014; 109(9): 1399.
2.Meng, Y, Deng, W, Wang, H, Guo, W, Li, T. The prefrontal dysfunction in individuals with Internet gaming disorder: a meta-analysis of functional magnetic resonance imaging studies. Addict Biol. 2014; 20(4): 799.
3.Király, O, Nagygyörgy, K, Griths, MD, Demetrovics, Z. Problematic Online Gaming. In: Rosenberg, KP, Feder, LC (eds). Behavioral Addictions: Criteria, Evidence, and Treatment. San Diego, CA; Academic Press 2014: 6197.
4.Julie, M, Frédéric, M, Magali, N, et al. Massively multiplayer online role-playing games: comparing characteristics of addict vs non-addict online recruited gamers in a French adult population. BMC Psychiatry. 2011; 11(1): 144.
5.Gentile, DA, Choo, H, Liau, A, et al. Pathological video game use among youths: a two-year longitudinal study. Pediatrics. 2011; 127(2): e319.
6.American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Washington DC: American Psychiatric Pub; 2013.
7.Montag, C, Reuter, M. Internet Addiction: Neuroscientific Approaches and Therapeutical Interventions. Springer Publishing Company, Incorporated; 2015.
8.Viriyavejakul, C. Recreational Gaming Behavior of Undergraduate Students in Thailand. In McFerrin, K., Weber, R., Carlsen, R. & Willis, D. (Eds.), Proceedings of SITE 2008--Society for Information Technology & Teacher Education International Conference. Las Vegas, NV; Association for the Advancement of Computing in Education (AACE) 2008: 49484955.
9.Kuss, DJ, Griffiths, MD. Internet gaming addiction: a systematic review of empirical research. Int J Mental Health Addict. 2012; 10(2): 278296.
10.Wang, Y, Wu, L, Wang, L, Zhang, Y, Du, X, Dong, G. Impaired decision-making and impulse control in Internet gaming addicts: evidence from the comparison with recreational Internet game users. Addict Biol. 2016; 22(6): 16101621.
11.Dong, G, Li, H, Wang, L, Potenza, MN. Cognitive control and reward/loss processing in internet gaming disorder: results from a comparison with recreational internet game-users. Eur Psychiatry. 2017; 44: 3038.
12.Bae, S, Hong, JS, Kim, SM, Han, DH. Bupropion shows different effects on brain functional connectivity in patients with internet-based gambling disorder and internet gaming disorder. Front Psychiatry. 2018; 10(9): 130.
13.Petry, NM, Zajac, K, Ginley, MK. Behavioral addictions as mental disorders: to be or not to be? Annu Rev Clin Psychol. 2016; 14(1): 399423.
14.Ko, CH, Hsieh, TJ, Wang, PW, et al. Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015; 57: 185.
15.Dong, G, Potenza, MN. A cognitive-behavioral model of Internet gaming disorder: theoretical underpinnings and clinical implications. J Psychiatric Res. 2014; 58(8): 711.
16.Dong, G, Potenza, MN. Risk-taking and risky decision-making in internet gaming disorder: implications regarding online gaming in the setting of negative consequences. J Psychiatric Res. 2016; 73(1): 1.
17.Dong, G, Wang, L, Du, X, Potenza, MN. Gaming increases craving to gaming-related stimuli in individuals with internet gaming disorder. Biol Psychiatry Cog Neurosci Neuroimaging. 2017; 2(5): 404412.
18.Dong, G, Hu, Y, Xiao, L. Reward/punishment sensitivities among internet addicts: implications for their addictive behaviors. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013; 46(5): 139145.
19.Wang, L, Wu, L, Lin, X, et al. Dysfunctional default mode network and executive control network in people with Internet gaming disorder: independent component analysis under a probability discounting task. Eur Psychiatry. 2016; 34: 36.
20.Gilman, JM, Calderon, V, Curran, MT, Evins, AE. Young adult cannabis users report greater propensity for risk-taking only in non-monetary domains. Drug Alcohol Depend. 2015; 147: 2631.
21.Schutter, DJLG, Bokhoven, IV, Vanderschuren, LJMJ, Lochman, JE, Matthys, W. Risky decision making in substance dependent adolescents with a disruptive behavior disorder. J Abnormal Child Psychol. 2011; 39(3): 333.
22.Madden, GJ, Petry, NM, Johnson, PS. Pathological gamblers discount probabilistic rewards less steeply than matched controls. Exp Clin Psychopharmacol. 2009; 17(5): 283290.
23.Calhoun, VD, Adali, T, Pearlson, GD, Pekar, JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp.. 2001; 14(3): 140.
24.Wang, Y, Wu, L, Zhou, H, et al. Impaired executive control and reward circuit in internet gaming addicts under a delay discounting task: independent component analysis. Eur Arch Psychiatry Clin Neurosci. 2017; 267(3): 245255.
25.He, Y, Evans, A. Graph theoretical modeling of brain connectivity. Curr Opin Neurol. 2010; 23(4): 341350.
26.Newman, MEJ. The structure and function of complex networks. SIAM Rev 2003; 45(2): 167256.
27.Achard, S, Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 2007; 3(2):e17.
28.Kim, DI, Manoach, DS, Mathalon, DH, et al. Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Hum Brain Mapp. 2009; 30(11): 37953811.
29.Wang, L, Wu, L, Lin, X, et al. Altered brain functional networks in people with Internet gaming disorder: evidence from resting-state fMRI. Psychiatry Res Neuroimaging. 2016; 254: 156.
30.Ye, Z, Doñamayor, N, Münte TF. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis. Hum Brain Mapp.. 2014; 35(2): 367376.
31.Dong, G, Hu, Y, Lin, X. Reward/punishment sensitivities among internet addicts: implications for their addictive behaviors. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013; 46(5): 139.
32.Lecrubier, Y, Sheehan, DV, Weiller, E, et al. The mini international neuropsychiatric interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur Psychiatry. 1997; 12(5): 224231.
33.Young, K. Internet addiction: diagnosis and treatment considerations. J Contemp Psychother. 2009; 39(4): 241246.
34.Yi, R, Chase, WD, Bickel, WK. Probability discounting among cigarette smokers and nonsmokers: molecular analysis discerns group differences. Behav Pharmacol. 2007; 18(7): 633639.
35.Rachlin, H, Raineri, A, Cross, D. Subjective probability and delay. J Exp Anal Behav. 1991; 55(2): 233244.
36.Young, KS. Internet addiction: the emergence of a new clinical disorder. Cyberpsychol Behav. 1998; 1(3): 237244.
37.Mitchell, SH. Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology. 1999; 146(4): 455464.
38.Reynolds, B, Richards, JB, Horn, K, Karraker, K. Delay discounting and probability discounting as related to cigarette smoking status in adults. Behav Process. 2004; 65(1): 3542.
39.Bell, AJ, Sejnowski, TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995; 7(6): 11291159.
40.Himberg, J, Hyvärinen, A, Esposito, F. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage. 2004; 22(3): 1214.
41.Meda, SA, Stevens, MC, Folley, BS, Calhoun, VD, Pearlson, GD. Evidence for anomalous network connectivity during working memory encoding in schizophrenia: an ICA based analysis. Plos One. 2009; 4(11):e7911.
42.Salvador, R, Suckling, J, Coleman, MR, Pickard, JD, Menon, D, Bullmore, E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex. 2005; 15(9): 13321342.
43.Fisher, R. On the ‘probable error’ of a coefficient of correlation deduced from a small sample. Metron. 1921; 1: 332.
44.Liu, Y, Liang, M, Zhou, Y, et al. Disrupted small-world networks in schizophrenia. Brain. 2008; 131(4): 945961.
45.Watts, DJ, Strogatz, SH. Collective dynamics of ‘small-world’ networks. Nature. 1998; 393(6684): 440442.
46.Zhang, J, Wang, J, Wu, Q, et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry. 2011; 70(4): 334342.
47.Widyanto, L, Griffiths, MD, Brunsden, V. A psychometric comparison of the internet addiction test, the internet-related problem scale, and self-diagnosis. Cyberpsychol Behav Social Networking. 2011; 14(3): 141149.
48.Dai, Z, Harrow, SE, Song, X, Rucklidge, JJ, Grace, RC. Gambling, delay, and probability discounting in adults with and without ADHD. J Attent Disord. 2013; 20(11): 968.
49.Reynolds, B, Richards, JB, Horn, K, Karraker, K. Delay discounting and probability discounting as related to cigarette smoking status in adults. Behav Process. 2004; 65(1): 3542.
50.Holt, DD, Green, L, Myerson, J. Is discounting impulsive?. Evidence from temporal and probability discounting in gambling and non-gambling college students. Behav Process. 2003; 64(3): 355367.
51.Shirer, W, Ryali, S, Rykhlevskaia, E, Menon, V, Greicius, M. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex. 2012; 22(1): 158165.
52.Krmpotich, TD, Tregellas, JR, Thompson, LL, Banich, MT, Klenk, AM, Tanabe, JL. Resting-state activity in the left executive control network is associated with behavioral approach and is increased in substance dependence. Drug Alcohol Depend. 2013; 129(1-2): 1.
53.Sutherland, MT, Mchugh, MJ, Pariyadath, V, Stein, EA. Resting state functional connectivity in addiction: lessons learned and a road ahead. Neuroimage. 2012; 62(4): 22812295.
54.Rui, N, Taki, Y, Takeuchi, H, et al. Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial. Plos One. 2013; 8(2):e55518.
55.Rui, N, Yasuyuki, T, Hikaru, T, et al. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial. Plos One. 2012; 7(1):e29676.
56.Dong, G, Lin, X, Hu, Y, Xie, C, Du, X. Imbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder. Sci Rep-Uk. 2015; 5(1): 97.
57.Bonnelle, V, Ham, TE, Leech, R, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci. 2012; 109(12): 4690.
58.Sridharan, D, Levitin, DJ, Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci. 2008; 105(34): 12569.
59.Uddin, LQ, Supekar, KS, Ryali, S, Menon, V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J Neurosci Off J Soc Neurosci. 2011; 31(50): 1857818589.
60.Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cog Sci. 2011; 15(10): 483506.
61.Delbeuck, X, Linden, MVD, Collette, F. Alzheimer’ disease as a disconnection syndrome? Neuropsychol Rev. 2003; 13(2): 7992.
62.Wang, XB, Zhao, XH, Jiang, H, et al. The brain functional network efficiency in patients with mild cognitive impairment. Chin Comput Med Imaging. 2015; 21(1):15.
63.Power, Y, Goodyear, B, Crockford, D. Neural correlates of pathological gamblers preference for immediate rewards during the iowa gambling task: an fMRI study. J Gambl Stud. 2012; 28(4): 623636.
64.Dong, G, Huang, J, Du, X. Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. J Psychiatric Res. 2011; 45(11): 1525.
65.Zhao, Q, Tang, Y, Feng, H, Li, C, Sui, D. The effects of neuron heterogeneity and connection mechanism in cortical networks. Phys A Stat Mech Appl. 2008; 387(23): 59525957.
66.Yuan, K, Wei, Q, Yu, D, et al. Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Struct Funct. 2016; 221(3): 14271442.
67.Xing, L, Yuan, K, Bi, Y, et al. Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain Res. 2014; 1586: 109.
68.Moussa, MN, Steen, MR, Laurienti, PJ, Hayasaka, S. Consistency of network modules in resting-state fMRI connectome data. Plos One. 2012; 7(8): 1036.
69.Schmidt, A, Denier, N, Magon, S, et al. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution. Transl Psychiatry. 2014; 5(3):e533.
70.Meng, YJ, Deng, W, Wang, HY, et al. Reward pathway dysfunction in gambling disorder: a meta-analysis of functional magnetic resonance imaging studies. Behav Brain Res. 2014; 275: 243.
71.Volkow, ND, Wang, GJ, Fowler, JS, Tomasi, D, Telang, F, Baler, R. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. Bioessays News Rev Mol Cell Dev Biol. 2010; 32(9): 748755.
72.Dong, G, Huang, J, Du, X. Enhanced reward sensitivity and decreased loss sensitivity in internet addicts: an fMRI study during a guessing task. J Psychiatric Res. 2011; 45(11): 15251529.
73.Dong, G, Wang, Y, Potenza, MN. The activation of the caudate is associated with correct recollections in a reward-based recollection task. Hum Brain Mapp. 2016; 37(11): 39994005.
74.Lorenz, RC, Gleich, T, Gallinat, J, Kühn, S. Video game training and the reward system. Front Hum Neurosci. 2015; 9: 40.
75.Kaiser, M, Hilgetag, CC. Modelling the development of cortical systems networks. Neurocomputing. 2004; 58–60(3): 297302.
76.Wee, CY, Zhao, Z, Yap, PT, et al. Disrupted brain functional network in internet addiction disorder: a resting-state functional magnetic resonance imaging study. Plos One. 2014; 9(9):e107306.
77.Lynall, ME, Bassett, DS, Kerwin, R, et al. Functional connectivity and brain networks in schizophrenia. J Neurosci. 2010; 30(28): 94779487.
78.Van Den Heuvel, MP, Hulshoff Pol, HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010; 20(8): 519534.
79.Hayasaka, S, Laurienti, PJ. Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. Neuroimage. 2010; 50(2): 499.

Keywords

Altered brain functional networks in Internet gaming disorder: independent component and graph theoretical analysis under a probability discounting task

  • Ziliang Wang (a1), Xiaoyue Liu (a2), Yanbo Hu (a3), Hui Zheng (a1), Xiaoxia Du (a4) and Guangheng Dong (a1) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed