Skip to main content Accessibility help

Endocrinology of Menopausal Transition and Its Brain Implications

Published online by Cambridge University Press:  07 November 2014


The central nervous system is one of the main target tissues for sex steroid hormones, which act on both through genomic mechanisms, modulating synthesis, release, and metabolism of many neuropeptides and neurotransmitters, and through non-genomic mechanisms, influencing electrical excitability, synaptic function, morphological features, and neuron-glia interactions. During the climacteric period, sex steroid deficiency causes many neuroendocrine changes. At the hypothalamic level, estrogen withdrawal gives rise to vasomotor symptoms, to eating behavior disorders, and altered blood pressure control. On the other hand, at the limbic level, the changes in serotoninergic, noradrenergic, and opioidergic tones contribute to the modifications in mood, behavior, and nociception. Hormone replacement therapy (HRT) positively affects climateric depression throughout a direct effect on neural activity and on the modulation of adrenergic and serotoninergic tones and may modulate the decrease in cognitive efficiency observed in climaterium. The identification of the brain as a de novo source of neurosteroids, suggests that the modifications in mood and cognitive performances occurring in postmenopausal women may also be related to a change in the levels of neurosteroids. These findings open new perspectives in the study of the effects of sex steroids on the central nervous system and on the possible use of alternative and/or auxiliary HRT.

Review Articles
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below.


1. Genazzani, AR, Petraglia, F, Purdy, RH, eds. The Brain: Source and Target for Sex Steroid Hormones. London, United Kingdom; The Parthenon Publishing Group; 1996.Google Scholar
2. Kruijver, FP, Zhou, JN, Pool, CW, et al. Male-to-female transsexuals have female neuron numbers in a limbic nucleus. J Clin Endocrinol Metab. 2000;85:20342041.CrossRefGoogle Scholar
3. Cooke, B, Hegstrom, CD, Villeneuve, LS, et al. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol. 1998;19:323362.CrossRefGoogle ScholarPubMed
4. Pfaff, DW. Estrogens and Brain Function. New York, NY: Springer-Verlag; 1980.CrossRefGoogle Scholar
5. Fraser, IS, Jansen, RPS, Whitehead, MJ, eds. Effects of Estrogen and Progesterone on the Central System. Edinburgh, Scotland: Churchill Livingston; 1998.Google Scholar
6. Keefe, D, Garcia-Segura, LM, Naftolin, F. New insights into estrogen action on the brain. Neurobiol Aging. 1994;15:495497.CrossRefGoogle Scholar
7. Genazzani, AR, Gambacciani, M, Simoncini, T, Schneider, HP; International Menopause Society. “Controversial issues in climacteric medicine” series 3rd Pisa workshop “HRT in climacteric and aging brain”. Pisa, Italy, 15-18 March 2003. Maturitas. 2003:46:726.CrossRefGoogle Scholar
8. Gruber, CJ, Tschugguel, W, Schneeberger, C, et al. Production and actions of estrogens. N Engl J Med. 2002;346:340352.CrossRefGoogle ScholarPubMed
9. Sherwin, BB. Estrogen effects on cognition in menopausal women. Neurology. 1997;48:S21S26.CrossRefGoogle ScholarPubMed
10. Alonso-Soleis, R, Abreu, P, Leopez-Coviella, I, et al. Gonadal steroid modulation of neuroendocrine transduction: a transynaptic view. Cell Mol Neurobiol. 1996;3:357382.CrossRefGoogle Scholar
11. Couse, JF, Lindzey, J, Grandien, K, Gustafsson, JA, Korach, KS. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology. 1997;138:46134621.CrossRefGoogle ScholarPubMed
12. Falkenstein, E, Wehling, M. Nongenomically initiated steroid actions. Eur J Clin Invest. 2000;30(suppl 3):5154.CrossRefGoogle ScholarPubMed
13. Kuppers, E, Ivanova, T, Karolczak, M, et al. Classical and nonclassical estrogen action in the developing midbrain. Horm Behav. 2001;40:196202.CrossRefGoogle ScholarPubMed
14. Brinton, RD. Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer's disease: recent insights and remaining challenges. Learn Memory. 2000;8:121133.CrossRefGoogle ScholarPubMed
15. Kelly, MJ, Levin, ER. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab. 2001;12:152156.CrossRefGoogle ScholarPubMed
16. Kelly, MJ, Wagner, EJ. Estrogen modulation of G-protein-coupled receptors. Trends Endocrinol Metab. 1999;10:369374.CrossRefGoogle ScholarPubMed
17. Panay, N, Sands, RH, Studd, JWW. Estrogen and behaviour. In: Genazzani, AR, Petraglia, F, Purdy, RH, eds. The Brain: Source and Target for Sex Steroid Hormones. London, United Kingdom; The Parthenon Publishing Group; 1996:257276.Google Scholar
18. Karla, SP. Gonadal steroid hormones promote interactive comunication. In: Genazzani, AR, Petraglia, F, Purdy, RH, eds. The Brain: Source and Target for Sex Steroid Hormones. London, United Kingdom; The Parthenon Publishing Group; 1996:153164.Google Scholar
19. Etgen, AM, Karkanias, GB Estrogen regulation of noradrenergic signaling in the hypothalamus. Psychonbeuroendocrinology. 1994;19:603610.CrossRefGoogle Scholar
20. Ansonoff, MA, Etgen, AM. Evidence that oestradiol attenuates beta-adrenoceptor function in the hypothalamus of female rats by altering receptor phosphorylation and sequestration. J Neuroendocrinol. 2000;12:10601066.CrossRefGoogle ScholarPubMed
21. Herbison, AE, Simonian, SX, Thanky, NR, Bicknell, RJ. Oestrogen modulation of noradrenaline neurotransmission. Novartis Found Symp. 2000;230:7485.CrossRefGoogle ScholarPubMed
22. Haywood, SA, Simonian, SX, van der Beek, EM, Bicknell, RJ, Herbison, AE. Fluctuating estrogen and progesterone receptor expression in brainstem norepinephrine neurons through the rat estrous cycle. Endocrinology. 1999;140:32553263.CrossRefGoogle ScholarPubMed
23. Dickinson, SL, Curzon, G. 5-Hydroxytryptamine-mediated behavior in male and female rats. Neuropharmacology. 1986;25:771776.CrossRefGoogle ScholarPubMed
24. Biegon, A, Bercovitz, H, Samuel, D. Serotonin receptor concentration during the estrous cycle of the rat. Brain Res. 1980;187:221225.CrossRefGoogle ScholarPubMed
25. Mendelson, SD, McKittrick, CR, McEwen, BS. Autoradiographic analyses of the effects of estradiol benzoate on [3H]paroxetine binding in the cerebral cortex and dorsal hippocampus of gonadectomized male and female rats. Brain Res 1993;601:299301.CrossRefGoogle Scholar
26. Luine, VN, McEwen, BS. Effect of oestradiol on turnover of type A monoamine oxidase in brain. J Neurochem. 1997;28:12211227.CrossRefGoogle Scholar
27. Bethea, CL, Lu, NZ, Gundlah, C, Streicher, JM. Diverse actions of ovarian steroids in the serotonin neural system. Front Neuroendocrinol. 2002;23:41100.CrossRefGoogle ScholarPubMed
28. Sherwin, BB. Progestogens used in menopause. Side effects, mood and quality of life. J Reprod Med. 1999;44(2 suppl):227232.Google ScholarPubMed
29. Luine, VN, Rhodes, JC. Gonadal hormone regulation of MAO and other enzymes in hypothalamic areas. Neuroendocrinology. 1983;36:235241.CrossRefGoogle ScholarPubMed
30. Studd, JW, Panay, N. Hormones and depression in women. Climateric. 2004;7:338346.CrossRefGoogle ScholarPubMed
31. Decker, MW. The effects of aging on hippocampal and cortical projections of the forebrain cholinergic system. Brain Res Rev. 1987;12:423435.CrossRefGoogle Scholar
32. Toran-Allerand, CD. The estrogen/neurotrophin connection during neuraldevelopment: is co-localization of estrogen receptors with the neurotrophins and their receptors biologically relevant? Dev Neurosci. 1996;18:3648.CrossRefGoogle ScholarPubMed
33. McMillan, PJ, Singer, CA, Dorsa, DM. The effects of ovariectomy andestrogen replacement on trkA and choline acetyltransferase mRNA expression in the basal forebrain of the adult female Sprague-Dawley rat. J Neurosci. 1996;16:18601865.Google Scholar
34. Luine, V, Park, D, Joh, T, Reis, D, McEwen, B. Immunochemical demonstration of increased choline acetyltransferase concentration in rat preoptic area after estradiol administration. Brain Res. 1980;191:273277.CrossRefGoogle ScholarPubMed
35. Kuhl, DE, Koeppe, RA, Minoshima, S, et al. In vivo mapping of cerebral cetylcholinesterase activity in aging and Alzheimer's disease. Neurology. 1999;52:691699.CrossRefGoogle Scholar
36. Baldereschi, M DiCarlo, A, Lepore, V, et al. Estrogen replacement therapy and Alzheimer's disease in the Italian Longitudinal Study on Aging. Neurology. 1998;50:9961002.CrossRefGoogle ScholarPubMed
37. Birge, SJ. The role of estrogen in the treatment of Alzheimer's disease. Neurology. 1997;(5 suppl 7)48:S36S41.CrossRefGoogle ScholarPubMed
38. Bluming, AZ. Hormone replacement therapy: the debate should continue. Geriatrics. 2004;59:30-31, 3537.Google ScholarPubMed
39. Kampen, DL, Sherwin, BB. Estrogen use and verbal memory in healthy postmenopausal women. Obstet Gynecol. 1994;83:979983.CrossRefGoogle ScholarPubMed
40. Costa, MM, Reus, VI, Wolkowitz, OM, et al. Estrogen replacement therapy and cognitive decline in memory-impaired post-menopausal women. Biol Psychiatry. 1999;46:182188.CrossRefGoogle ScholarPubMed
41. Schneider, LS, Farlow, M. Combined tacrine and estrogen replacement therapy in patients with Alzheimer's disease. Ann N Y Acad Sci. 1997;826:317322.CrossRefGoogle ScholarPubMed
42. Zanisi, M, Messi, E Sex steroid and the control of LHRH secretion. J Steroid Biochem Mol Biol. 1991;40:155163.CrossRefGoogle ScholarPubMed
43. Zanisi, M, Galbiati, M, Messi, E. The multiple inputs to the LHRH neurons. In: Genazzani, AR, Petraglia, F, Nappi, G, Montemagno, U, eds. Neuroendocrinology of Female Reproductive Function. London, United Kingdom; The Parthenon Publishing Group; 1993:3341.Google Scholar
44. Stomati, M, Bernardi, F, Luisi, S, et al. Conjugated equine estrogens, estrone sulphate and estradiol valerate oral administration in ovariectomized rats: effects on central and peripheral allopregnanolone and beta-endorphin. Maturitas. 2002;43:195206.CrossRefGoogle ScholarPubMed
45. Bernardi, F, Stomati, M, Luisi, S, et al. Effects of the new generation selective estrogen receptor modulator EM-652 and oral administration of estradiol valerate on circulating, brain, and adrenal beta-endorphin and allopregnanolone levels in intact fertile and ovariectomized rats. Fertil Steril. 2002;77:10181027.CrossRefGoogle ScholarPubMed
46. Genazzani, AR, Bernardi, F, Stomati, M, et al. Raloxifene analog LY 117018 effects on central and peripheral beta-endorphin. Gynecol Endocrinol. 1999;13:249258.CrossRefGoogle ScholarPubMed
47. Genazzani, AR, Petraglia, F, Facchinetti, F, et al. Steroid replacement increase beta-endorphin and beta-lipotropin plasma levels in postmenopausal women. Gynecol Obstet Invest. 1988;26:153159.CrossRefGoogle ScholarPubMed
48. Aleem, FA, McIntosh, T. Menopausal syndrome: plasma levels of b-endorphin in postmenopausal women measured by a specific radioimmunoassay. Maturitas. 1985;7:329334.CrossRefGoogle Scholar
49. Genazzani, AR, Petraglia, F, Facchinetti, F, et al. Increase of proopiomelanocortin-related peptides during subjective menopausal flushes. Am J Obstet Gynecol. 1984;149:775779.CrossRefGoogle ScholarPubMed
50. Lightman, SL, Jacobs, HS, Maguire, AK, McGarrick, G, Jeffcoate, SL. Climateric flushing: clinical and endocrine response to infusion of naloxone. Br J Obstet Gynaecol. 1981;88:919924.CrossRefGoogle Scholar
51. Adler, MW. Opioid peptides. Life Sci. 1980;26:497510.CrossRefGoogle ScholarPubMed
52. Zarate, A, Fonseca, E, Ochoa, R, Basurto, L, Hernandez, M. Low-dose conjugated equine estrogens elevate circulating neurotransmitters and improve the psychological well-being of menopausal women. Fertil Steril. 2002;77:952955.CrossRefGoogle ScholarPubMed
53. Stomati, M, Bersi, C, Bernardi, F, et al. Beta-endorphin response to oral glucose tolerance test in obese and non-obese pre- and postmenopausal women. Gynecol Endocrinol. 1998;12:3540.CrossRefGoogle ScholarPubMed
54. Donouhe, TL, Dorse, DM. The opiomelanotropinergic neuronal and endocrine system. Peptides. 1982;3:383395.Google Scholar
55. Genazzani, AR, Petraglia, F, Cleva, M, et al. Norgestimate increases pituitary and hypothalamic concentrations of immunoreactive beta-endorphin. Contraception. 1989;5:605613.CrossRefGoogle Scholar
56. Genazzani, AR, Petraglia, F, Mercuri, N, et al. Effect of steroid hormones and anti-hormones on hypothalamic beta-endorphin concentrations in intact and castrated female rats. J Endocrinol Invest. 1990;13:9196.CrossRefGoogle Scholar
57. Stomati, M, Bersi, C, Rubino, S, et al. Neuroendocrine effects of different estradiol-progestin regimens in postmenopausal women. Maturitas. 1997;28:127135.CrossRefGoogle Scholar
58. Petraglia, F, Comitini, G, Genazzani, AR, et al. B-Endorphin in human reproduction. In: Herz, A. Opioids II. Berlin, Germany: Springer-Verlag; 1993:763780.CrossRefGoogle Scholar
59. Florio, P, Quirici, B, Casarosa, E, et al. Neuroendocrine effects of raloxifene hydrochloride in postmenopausal women. Gynecol Endocrinol. 2001;15:359366.CrossRefGoogle ScholarPubMed
60. Stomati, M, Monteleone, P, Casarosa, E, et al. Six-month oral dehydroepiandrosterone supplementation in early and late postmenopause. Gynecol Endocrinol. 2000;14:342363.CrossRefGoogle Scholar
61. Zarjevski, N, Cusin, I, Vettor, R, et al. Intracerebroventricular administration of neuropeptide Y to normal rats has divergent effects on glucose utilization by adipose tissue and skeletal muscle. Diabetes. 1994;43:764769.CrossRefGoogle ScholarPubMed
62. Milewicz, A, Bidzinska, B, Mikulski, E, Demissie, M, Tworowska, U. Influence of obesity and menopausal status on serum leptin, cholecystokinin, galanin and neuropeptide Y levels. Gynecol Endocrinol. 2000;14:196203.CrossRefGoogle ScholarPubMed
63. Milewicz, A, Mikulski, E, Bidzinska, B. Plasma insulin, cholecystokinin, galanin, neuropeptide Y and leptin levels in obese women with and without type 2 diabetes mellitus. Int J Obes Relat Metab Disord. 2000;24(suppl 2):S152S153.CrossRefGoogle Scholar
64. Baranowska, B, Radzikowska, M, Wasilewska-Dziubinska, E, Roguski, K, Polonowski, A. Relationship among leptin, neuropeptide Y, and galanin in young women and in postmenopausal women. Menopause. 2000;7:149155.CrossRefGoogle ScholarPubMed
65. Kaplan, LM, Gabriel, SM, Koenig, JL, et al. Galanin is an estrogen inducible secretory product of the rat anterior pituitary. Proc Natl Acad Sci U S A. 1988;85:74087412.CrossRefGoogle ScholarPubMed
66. Meczekalski, B, Slopien, R, Warenik-Szymankiewicz, A. Estimation of hormone replacement therapy influence on serum galanin level in postmenopausal women. Climacteric. 2001;4:215218.CrossRefGoogle ScholarPubMed
67. Reiter, RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 1991;12:151180.CrossRefGoogle ScholarPubMed
68. Reiter, RJ. Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol. 1998;56:359384.CrossRefGoogle ScholarPubMed
69. Morioka, N, Okatani, Y, Wakatsuki, A. Melatonin protect against age-related DNA damage in the brains of female senescence-accelerated mice. J Pineal Res. 1999;27:202209.CrossRefGoogle Scholar
70. Harrod, CG, Bendok, BR, Hunt Batjer, H. Interactions between melatonin and estrogen may regulate cerebrovascular function in women: clinical implications for the effective use of HRT during menopause and aging. Med Hypotheses. 2005;64:725735.CrossRefGoogle ScholarPubMed
71. Lewy, AJ, Sack, RL. Exogenous melatonin's phase-shifting effects on the endogenous melatonin profile in sighted humans: a brief review and critique of the literature. J Biol Rhythms. 1997;12:588594.CrossRefGoogle ScholarPubMed
72. Zhdanova, IV, Wurtman, RJ. Efficacy of melatonin as a sleep-promoting agent. J Pineal Res. 1997;12:644650.Google ScholarPubMed
73. Cagnacci, A. Melatonin in relation to physiology in adult humans. J Pineal Res. 1996;21:200213.CrossRefGoogle ScholarPubMed
74. Birau, N, Peterssen, U, Meyer, C. Hypotensive effect of melatonin in essential hypertension. IRSC. Med Sci. 1981;9:901906.Google Scholar
75. Cagnacci, A, Arangino, S, Angiolucci, M, et al. Influences of melatonin administration on the circulation of women. Am J Physiol. 1998;274(2 pt 2):335338.Google Scholar
76. Cagnacci, A, Arangino, S, Angiolucci, M, et al. Effect of exogenous melatonin on vascular reactivity and nitric oxide in postmenopausal women: role of hormone replacement therapy. Clin Endocrinol (Oxf). 2001;54:261266.CrossRefGoogle ScholarPubMed
77. Viswanathan, M, Laitinen, JT, Saavedra, JM. Differential expression of melatonin receptors in spontaneously hypertensive rats. Neuroendocrinology. 1992;56:864870.CrossRefGoogle ScholarPubMed
78. Arendt, J, Laud, CA, Symons, AM, Pryde, SJ. Plasma melatonin in ewes after ovariectomy. J Reprod Fertil. 1983;68:213218.CrossRefGoogle ScholarPubMed
79. Okatani, Y, Morioka, N, Wakatsuki, A. Changes in nocturnal melatonin secretion in perimenopausal women: Correlation with endogenous estrogen concentrations. J Pineal Res. 2000;28:111118.CrossRefGoogle ScholarPubMed
80. Cagnacci, A, Soldani, R, Yen, SS. Melatonin enhances cortisol levels in aged women: reversible by estrogens. J Pineal Res. 1997;22:8185.CrossRefGoogle ScholarPubMed
81. Akwa, Y, Baulieu, EE. Neurosteroids: behavioral aspects and physiological implications [French]. J Soc Biol. 1999;193:293298.CrossRefGoogle Scholar
82. Mellon, SH. Neurosteroids: biochemistry, modes of action, and clinical relevance. J Clin Endocrinol Metab. 1994;78:10031008.Google ScholarPubMed
83. Majewska, MD. Neurosteroids: endogenous bimodal modulators of the GABAA receptors. Mechanism of action and physiological significance. Prog Neurobiol. 1992;38:379395.CrossRefGoogle ScholarPubMed
84. Wolf, OT, Neumenm, O, Helhammer, DH, et al. Effects of a two-week physiological dehydroepiandrosterone substitution on cognitive performance and well-being in healthy elderly women and men. J Clin Endocrinol Metab. 1997;82:23632367.Google ScholarPubMed
85. Monteleone, P, Luisi, S, Tonetti, A, et al. Allopregnanolone concentrations and premenstrual syndrome. Eur J Endocrinol. 2000;142:269273.CrossRefGoogle ScholarPubMed
86. Palumbo, MA, Salvestroni, C, Gallo, R, et al. Allopregnanolone concentrations in hippocampus of prepubertal rats and female rats throughout estrous cycle. J Endocrinol Invest. 1995;18:853856.CrossRefGoogle ScholarPubMed
87. Schumacher, M, Coirini, H, McEwen, BS. Regulation of high affinity GABAA receptors in the dorsal hippocampus by estradiol and progesteron. Brain Res. 1989;487:178184.CrossRefGoogle Scholar
88. Serra, M, Pisu, MG, Littera, M, et al. Social isolation-induced decreases in both the abundance of neuroactive steroids and GABA(A) receptor function in rat brain. J Neurochem. 2000;75:732740.CrossRefGoogle ScholarPubMed
89. Genazzani, AR, Bernardi, F, Stomati, M, et al. Effects of estradiol and raloxifene analog on brain, adrenal and serum allopregnanolone content in fertile and ovariectomized female rats. Neuroendocrinology. 2000;72:162170.CrossRefGoogle ScholarPubMed
90. Bernardi, F, Casarosa, E, Pluchino, N, et al. Effect of dehydroepiandrosteron on central and peripheral levels of allopregnanolone and β-endorphin. Fertil Steril. 2005;83(suppl 4):11611168.CrossRefGoogle Scholar
91. Genazzani, AR, Petraglia, F, Bernardi, F, et al. Circulating levels of allopregnanolone in humans: gender, age and endocrine influences. J Clin Endocrinol Metab. 1998;83:20992103.CrossRefGoogle ScholarPubMed
92. Wilson, MA. Influences of gender, gonadectomy and estrous cycle on GABA/BZ receptors and benzodiazepine responses in rats. Brain Res Bull. 1992;29:165172.CrossRefGoogle ScholarPubMed
93. Schumacher, M, Coirini, H, Robert, F, et al. Genomic and membrane actions of progesterone: implications for reproductive physiology and behavior. Behav Brain Res. 1999;105:3752.CrossRefGoogle ScholarPubMed
94. Yamaji, T, Ibayashi, H. Serum deydroepiandrosterone sulphate in normal and pathological conditions. J Clin Endocrinol Metab. 1969;29:273278.CrossRefGoogle Scholar
95. Parker, LN, Odell, WD. Control of adrenal androgen secretion. Endocr Rev. 1980;4:392410.CrossRefGoogle Scholar
96. Corpechot, C, Robert, P, Axelson, M, Sjovall, J, Baulieu, EE. Characterization and measurement of dehydroepiandrosterone sulfate in the rat brain. Proc Natl Acad Sci U S A. 1981;78:47044707.CrossRefGoogle ScholarPubMed
97. Davis, SR, Burger, HG. Androgens and the postmenopausal woman J Clin Endocrinol Metab. 1996;81:27592763.Google ScholarPubMed
98. Utian, WH. The true clinical features of postmenopausal oophorectomy and their response to estrogens replacement therapy. S Afr Med J. 1972;46:732737.Google Scholar
99. Majewska, MD, Demirgoren, S, Spivak, CE, et al. The neurosteroid DHEA is an allosteric antagonist of the GABA A receptor. Brain Res. 1990;526:143146.CrossRefGoogle Scholar
100. Baulieu, EE. Dehydroepiandrosterone: a fountain of youth? J Clin Endocrinol Metab. 1996;81:31473151.CrossRefGoogle ScholarPubMed
101. Thijssen, JH, Nieuwenhuyse, H. DHEA: A Comprehensive Review. London, United Kingdom; The Parthenon Publishing Group; 1999.Google Scholar
102. Rubino, S, Stomati, M, Bersi, C, et al. Neuroendocrine effect of a short-term treatment with DHEA in postmenopausal women. Maturitas. 1998;28:251257.CrossRefGoogle ScholarPubMed
103. Taelman, P, Kayman, JM, Janssens, X, et al. Persistence of increased bone-resumption and possible role of dehydroepiandrosterone as a bone metabolism determinant in osteoporotic women in late menopause. Maturitas. 1989;11:6573.CrossRefGoogle Scholar
104. Nordin, BEC, Robertson, A, Seamark, RF. The relation between calcium absorption, serum DHEA and vertebral mineral density in postmenopausal women. J Clin Endocrinol Metab. 1985;60:651657.CrossRefGoogle ScholarPubMed
105. Wolkowitz, OM, Reus, VI, Roberts, E, et al. Dehydroepiandrosterone (DHEA) treatment of depression. Biol Psychiatry. 1997;41:311318.CrossRefGoogle ScholarPubMed
106. Genazzani, AD, Stomati, M, Bernardi, F, et al. Long-term low-dose dehydroepiandrosterone oral supplementation in early and late postmenopausal women modulates endocrine parameters and synthesis of neuroactive steroids. Fertil Steril. 2003;80:14951501.CrossRefGoogle ScholarPubMed
107. Ginzburg, J, Hardiman, P. Adrenergic agonist for menopausal complaints. In: Genazzani, AR, Montemagno, U, Nappi, C, et al, ed. The Brain and Female Reproductive Function. London, United Kingdom; Parthenon Publishing Group; 1987:623625.Google Scholar
108. Melis, G, Cagnacci, A, Gambacciani, M. Restoration of luteinizing hormone response to naloxone in postmenopausal women by chronic administration of the antidopaminergic drug veralipride. J Clin Endocrinol Metab. 1988;66:964969.CrossRefGoogle Scholar
109. Bernardi, F, Pieri, M, Stomati, M, Luisi, S, et al. Effect of different hormonal replacement therapies on circulating allopregnanolone and dehydroepiandrosterone levels in postmenopausal women. Gynecol Endocrinol. 2003;17:6577.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 25 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-wphb9 Total loading time: 0.419 Render date: 2021-01-27T17:14:02.284Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Endocrinology of Menopausal Transition and Its Brain Implications
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Endocrinology of Menopausal Transition and Its Brain Implications
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Endocrinology of Menopausal Transition and Its Brain Implications
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *