Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T17:40:18.276Z Has data issue: false hasContentIssue false

Zeolitization of a Phonolitic Ash Flow by Groundwater in the Laach Volcanic Area, Eifel, Germany

Published online by Cambridge University Press:  01 January 2024

Franz Bernhard*
Affiliation:
Institut für Technische Geologie und Angewandte Mineralogie, Technische Universität Graz, Rechbauerstraße 12, A-8010 Graz, Austria
Ulrike Barth-Wirsching
Affiliation:
Institut für Technische Geologie und Angewandte Mineralogie, Technische Universität Graz, Rechbauerstraße 12, A-8010 Graz, Austria
*
*E-mail address of corresponding author: bernhard@egam.tu-graz.ac.at

Abstract

Field and experimental studies were performed to understand the formation conditions of the Nettetal zeolite deposit, Laach volcanic area, Germany. This deposit shows pronounced small- (cm) and large-scale (tens of meters) variations of zeolitization, despite the same phonolitic precursor glass throughout the occurrence. Zeolitization of the pyroclastic ash flow is restricted to three distinct layers that are 0.15 to 10 m thick and separated by fresh ash. The glassy matrix is altered to chabazite, phillipsite, analcime and K-feldspar in various combinations, whereas the pumice clasts are altered predominantly to chabazite. Mass changes during zeolite formation appear to be small, and Ca enrichment in chabazite and phillipsite may have occurred after their formation by cation exchange.

The zeolites and zeolite assemblages observed in the Nettetal deposit were experimentally reproduced by reacting the phonolitic glass at 100–200°C with distilled water and 0.01 M alkaline solutions as well as with varying solid/liquid ratios and grain-sizes. Chabazite and phillipsite represented metastable transition phases with respect to analcime and K-feldspar. A high solid/liquid ratio accelerated the conversion of glass to zeolites.

None of the classic models of zeolite formation is fully applicable to the Nettetal deposit. The most probable environment for zeolitization in this deposit is the stagnant fringe water zone immediately above the groundwater table. In this zone, representing a relatively closed system, favorable solution compositions for zeolite formation could have been developed rather quickly by glass-water interaction, which is not possible within the more thoroughly flushed deeper parts of the groundwater system. The three distinct zeolite layers are probably the result of temporarily changing groundwater levels.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adabbo, M. Langella, A. de’Gennaro, M. and Guerriero, A., (1994) Sedimentary zeolites from East Eifel volcanic district (Germany) Materials Engineering 5 107 118.Google Scholar
Barth-Wirsching, U. and Höller, H., (1989) Experimental studies on zeolite formation conditions European Journal of Mineralogy 1 489506 10.1127/ejm/1/4/0489.CrossRefGoogle Scholar
Bogaard, P.V.D. and Schmincke, H.-U., (1984) The Eruptive Center of the Late Quaternary Laacher See Tephra Geologische Rundschau 73 3 933980 10.1007/BF01820883.CrossRefGoogle Scholar
Bogaard, P.V.D. and Schmincke, H.-U., (1995) 40Ar/39Ar ages of sanidine phenocrysts from Laacher See Tephra (12,900 years BP): chronostratigraphic and petrological significance Earth and Planetary Science Letters 133 163174 10.1016/0012-821X(95)00066-L.CrossRefGoogle Scholar
de’Gennaro, M. Cappelletti, P. Langella, A. Perrotta, A. and Scarpati, C., (2000) Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence Contributions to Mineralogy and Petrology 139 1735 10.1007/s004100050571.CrossRefGoogle Scholar
Dibble, W.E. and Tiller, W.A., (1981) Kinetic model of zeolite paragenesis in tuffaceous sediments Clays and Clay Minerals 29 323330 10.1346/CCMN.1981.0290502.CrossRefGoogle Scholar
Dyer, A. and Zubair, M., (1998) Ion-exchange in chabazite Microporous and Mesoporous Materials 22 135150 10.1016/S1387-1811(98)00069-9.CrossRefGoogle Scholar
Frechen, J. (1971) Siebengebirge am Rhein, Laacher Vulkangebiet, Maargebiet der Westeifel. Sammlung Geologischer Führer, 56, Gebrüder Bornträger, Berlin, Stuttgart.Google Scholar
Goldsmith, J.R. and Laves, F., (1954) The microcline-sanidine stability relations Geochimica et Cosmochimica Acta 5 119 10.1016/0016-7037(54)90058-7.CrossRefGoogle Scholar
Govindaraju, K., (1994) 1994 Compilation of working values and description for 383 geostandards Geostandards Newsletter 18 1158 10.1111/j.1751-908X.1994.tb00502.x.CrossRefGoogle Scholar
Grant, J.A., (1986) The Isocon-Diagram — A simple solution for Gresens’ equation of Metasomatic alteration Economic Geology 21 751 754.Google Scholar
Hall, A., (1998) Zeolitization of volcaniclastic sediments: the role of temperature and pH Journal of Sedimentary Research 68 739745 10.2110/jsr.68.739.CrossRefGoogle Scholar
Harms, E. and Schmincke, H.-U., (2000) Volatile composition of the phonolitic Laacher See magma (12,900 yr BP): implications for syn-eruptive degassing of S, F, Cl and H2O Contributions to Mineralogy and Petrology 138 8498 10.1007/PL00007665.CrossRefGoogle Scholar
Hay, R.L. and Mumpton, F.A., (1977) Geology of zeolites in sedimentary rocks Mineralogy and Geology of Natural Zeolites Washington, D.C Mineralogical Society of America 5364 10.1515/9781501508585-007.CrossRefGoogle Scholar
Hay, R.L. Sheppard, R.A. and Mumpton, F.A., (1977) Zeolites in open hydrologic systems Mineralogy and Geology of Natural Zeolites Washington, D.C Mineralogical Society of America 93102 10.1515/9781501508585-009.CrossRefGoogle Scholar
Holler, H. and Wirsching, U., (1974) Experimente zur Zeolithbildung durch hydrothermale Umwandlung. Zur Entstehung von Chabasit, Phillipsit und Analcim aus den glasigen Bestandteilen der Bims-Staubtuffe des Laacher Vulkangebietes Contributions to Mineralogy and Petrology 46 4960 10.1007/BF00377992.Google Scholar
Jandausch, P., (1980) Aufbau und Entstehung des Traß-Profils in der Grube Meurin/Eifel Unveröffentlichte Diplomarbeit Germany Universität Bochum 102 pp.Google Scholar
Lister, B., (1982) Evaluation ofAnalytical Data: A Practical Guide to Geoanalysis Geostandards Newsletter 6 175205 10.1111/j.1751-908X.1982.tb00353.x.CrossRefGoogle Scholar
Meyer, W., (1988) Geologie der Eifel Stuttgart, Germany E. Schweizerbart’sche Verlagsbuchhandlung 615 pp.Google Scholar
Rock, N.M.S. Webb, J.A. McNaughton, N.J. and Bell, G.D., (1987) Nonparametric estimation of averages and errors for small data-sets in isotope geosciences: a proposal Chemical Geology 66 163 177.Google Scholar
Ronen, D. Scher, H. and Blunt, M., (1997) On the structure and flow processes in the capillary fringe of phreatic aquifers Transport in Porous Media 28 159180 10.1023/A:1006583410617.CrossRefGoogle Scholar
Schmincke, H.-U., (1977) Eifel-Vulkanismus östlich des Gebietes Rieden-Mayen Fortschritte der Mineralogie, Beiheft 2 55 1 31.Google Scholar
Schmincke, H.-U. Park, C. and Harms, E., (1999) Evolution and environmental impacts ofthe eruption of Laacher See Volcano (Germany) 12,900 a BP Quaternary International 61 6172 10.1016/S1040-6182(99)00017-8.CrossRefGoogle Scholar
Wilkin, R.T. and Barnes, H.L., (2000) Nucleation and growth kinetics of analcime from precursor Na-clinoptilolite American Mineralogist 85 13291341 10.2138/am-2000-1001.CrossRefGoogle Scholar
Wright, T.L., (1968) X-ray and optical study of alkali feldspar: II. An X-ray method for determining the composition and structural state from measurement of 28 values for three reflections American Mineralogist 53 88 104.Google Scholar