Hostname: page-component-788cddb947-m6qld Total loading time: 0 Render date: 2024-10-07T09:36:24.118Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Pyrophyllite Edge Surfaces: Structure, Surface Energies, and Solvent Accessibility

Published online by Cambridge University Press:  01 January 2024

Aric G. Newton*
Affiliation:
Division of Energy and Environmental Systems, Faculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, 060-8628, Japan Division of Ecosystem Sciences, Mulford Hall #3114, University of California at Berkeley, Berkeley, CA 94720-3114, USA
Garrison Sposito
Affiliation:
Geochemistry Department, Division of Earth Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
*
*E-mail address of corresponding author: agnewton@kangwon.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Atomistic simulations of 2:1 clay minerals based on parameterized forcefields have been applied successfully to provide a detailed description of the interfacial structure and dynamics of basal planes and interlayers, but have made limited progress in exploring the edge surfaces of these ubiquitous layer-type aluminosilicates. In the present study, molecular dynamics simulations and energy-minimization calculations of the edge surfaces using the fully flexible CLAYFF forcefield are reported. Pyrophyllite provides an ideal prototype for the 2:1 clay-mineral edge surface because it possesses no structural charge, thus rendering the basal planes inert, while crystal-growth theory can be applied to identify two major candidates for the structure of the edge surfaces. Models based on these candidate structures reproduced bulk crystal bond distances accurately when compared to X-ray data and ab initio molecular simulations, and the predicted edge surface bond distances were in agreement with those determined via ab initio simulation. The calculated surface free energy and surface stress led to an accurate prediction of pyrophyllite nanoparticle morphology, while surface excess energies calculated for the edge surfaces were always negative. These results are consistent with the observed pyrophyllite nanoparticle morphology, with the concept of negative interfacial energies, and conditions that may give rise to them including a role in the stabilization of layer-type nanoparticulate minerals. Molecular dynamics simulations of hydrated nanoparticle edge surfaces indicated five reactive surface oxygen sites on the dominant candidate edge, in agreement with a recent model of proton titration data for 2:1 clay minerals. These promising results illustrate the potential for classical mechanical atomistic simulations that explore edge surface phenomena at much greater length- and times-scales than are currently possible with computationally expensive ab initio methods.

Type
Article
Copyright
Copyright © Clay Minerals Society 2015

References

Accelrys, , 2008 Materials Studio San Diego, California, USA Accelrys Software, Inc..Google Scholar
Adamson, A.W. and Gast, A.P., 1997 Physical Chemistry of Surfaces 6th edition New York Wiley.Google Scholar
Allen, M.P. and Tildesley, D.J., 1989 Computer Simulation of Liquids Oxford, UK and New York Clarendon Press, Oxford University Press.Google Scholar
Berendsen, H.J.C. Grigera, J.R. and Straatsma, T.P., 1987 The missing term in effective pair potentials Journal of Physical Chemistry 91 62696271.CrossRefGoogle Scholar
Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Handbook of Clay Science Amsterdam Elsevier 1224.Google Scholar
Bickmore, B.R. Bosbach, D. Hochella, M.F. Charlet, L. and Rufe, E., 2001 In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms American Mineralogist 86 411423.CrossRefGoogle Scholar
Bickmore, B.R. Rosso, K.M. Nagy, K.L. Cygan, R.T. and Tadanier, C.J., 2003 Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity Clays and Clay Minerals 51 359371.CrossRefGoogle Scholar
Bleam, W.F., 1993 Atomic theories of phyllosilicates — quantum-chemistry, statistical-mechanics, electrostatic theory, and crystal-chemistry Reviews of Geophysics 31 5173.CrossRefGoogle Scholar
Bleam, W.F. Welhouse, G.J. and Janowiak, M.A., 1993 The surface Coulomb energy and proton Coulomb potentials of pyrophyllite (010), (110), (100), and (130) edges Clays and Clay Minerals 41 305316.CrossRefGoogle Scholar
Bosbach, D. Charlet, L. Bickmore, B. and Hochella, M.F., 2000 The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy American Mineralogist 85 12091216.CrossRefGoogle Scholar
Bourg, I.C. Sposito, G. and Bourg, A.C.M., 2007 Modeling the acid-base surface chemistry of montmorillonite Journal of Colloid and Interface Science 312 297310.CrossRefGoogle ScholarPubMed
Churakov, S.V., 2006 Ab initio study of sorption on pyrophyllite: Structure and acidity of the edge sites Journal of Physical Chemistry B 110 41354146.CrossRefGoogle ScholarPubMed
Churakov, S.V., 2007 Structure and dynamics of the water films confined between edges of pyrophyllite: A first principle study Geochimica et Cosmochimica Acta 71 11301144.CrossRefGoogle Scholar
Churakov, S.V. and Dähn, R., 2012 Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy Environmental Science & Technology 46 57135719.CrossRefGoogle ScholarPubMed
Cygan, R.T. Liang, J.J. and Kalinichev, A.G., 2004 Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field Journal of Physical Chemistry B 108 12551266.CrossRefGoogle Scholar
Dähn, R. Jullien, M. Scheidegger, A.M. Poinssot, C. Baeyens, B. and Bradbury, M.H., 2006 Identification of neoformed Ni-phyllosilicates upon Ni uptake in montmorillonite: A transmission electron microscopy and extended X-ray absorption fine structure study Clays and Clay Minerals 54 209219.CrossRefGoogle Scholar
Dähn, R. Baeyens, B. and Bradbury, M.H., 2011 Investigation of the different binding edge sites for Zn on montmorillonite using P-EXAFS — the strong/weak site concept in the 2SPNE SC/CE sorption model Geochimica et Cosmochimica Acta 75 51545168.CrossRefGoogle Scholar
de Leeuw, N.H., Prietoand, M. and Brime, C., 2008 Computer simulations of surfaces and interfaces: A case study of the hydration and dissolution of αquartz SiO2 Computer Methods in Mineralogy and Geochemistry Madrid Sociedad Española de Mineralogía.Google Scholar
Elzinga, E.J. and Sparks, D.L., 1999 Nickel sorption mechanisms in a pyrophyllite—montmorillonite mixture Journal of Colloid and Interface Science 213 506512.CrossRefGoogle Scholar
Enderby, J.E. and Neilson, G.W., 1981 The structure of electrolyte-solutions Reports on Progress in Physics 44 593653.CrossRefGoogle Scholar
Ferrage, E. Martin, F. Petit, S. Pejo-Soucaille, S. Micoud, P. Fourty, G. Ferret, J. Salvi, S. de Parseval, P. and Fortune, J.P., 2003 Evaluation of talc morphology using FTIR and H/D substitution Clay Minerals 38 141150.CrossRefGoogle Scholar
Gibbs, J.W., 1931 The Collected Works of J. Willard Gibbs: Thermodynamics UK Longmans.Google Scholar
Greenberg, S.A., 1957 Thermodynamic functions for the solution of silica in water Journal of Physical Chemistry 61 196197.CrossRefGoogle Scholar
Gren, W. Parker, S.C. Slater, B. and Lewis, D.W., 2010 Structure of zeolite A (LTA) surfaces and the zeolite A/water interface The Journal of Physical Chemistry C 114 97399747.CrossRefGoogle Scholar
Hartman, P., 1973 Crystal Growth: An Introduction Amsterdam, New York North-Holland Publishing Company, American Elsevier 531.Google Scholar
Hedstrom, M. and Karnland, O., 2012 Donnan equilibrium in Na-montmorillonite from a molecular dynamics perspective Geochimica et Cosmochimica Acta 77 266274.CrossRefGoogle Scholar
Karasawa, N. and Goddard, W.A., 1989 Acceleration of convergence for lattice sums Journal of Physical Chemistry 93 73207327.CrossRefGoogle Scholar
Kremleva, A. Martorell, B. Kruger, S. and Rosch, N., 2012 Uranyl adsorption on solvated edge surfaces of pyrophyllite: A DFT model study Physical Chemistry Chemical Physics 14 58155823.CrossRefGoogle ScholarPubMed
Lal, R., 2004 Soil carbon sequestration impacts on global climate change and food security Science 304 16231627.CrossRefGoogle ScholarPubMed
Lee, J.H. and Guggenheim, S., 1981 Single-crystal X-ray refinement of pyrophyllite-1Tc American Mineralogist 66 350357.Google Scholar
Lin, Z. Gilbert, B. Liu, Q.L. Ren, G.Q. and Huang, F., 2006 A thermodynamically stable nanophase material Journal of the American Chemical Society 128 61266131.CrossRefGoogle ScholarPubMed
Liu, X. Lu, X. Meijer, E.J. Wang, R. and Zhou, H., 2012 Atomic-scale structures of interfaces between phyllosilicate edges and water Geochimica et Cosmochimica Acta 81 5668.CrossRefGoogle Scholar
Liu, X. Lu, X. Sprik, M. Cheng, J. Meijer, E.J. and Wang, R., 2013 Acidity of edge surface sites of montmorillonite and kaolinite Geochimica et Cosmochimica Acta 117 180190.CrossRefGoogle Scholar
Liu, X.D. Cheng, J. Sprik, M. Lu, X.C. and Wang, R.C., 2014 Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations Geochimica et Cosmochimica Acta 140 410417.CrossRefGoogle Scholar
Łodziana, Z. Topsoe, N.Y. and Norskov, J.K., 2004 A negative surface energy for alumina Nature Materials 3 289293.CrossRefGoogle ScholarPubMed
Lopez-Lemus, J. Chapela, G.A. and Alejandre, J., 2008 Effect of flexibility on surface tension and coexisting densities of water Journal of Chemical Physics 128 174703.CrossRefGoogle ScholarPubMed
Martins, D.M.S. Molinari, M. Gonçalves, M.A. Mirão, J.P. and Parker, S.C., 2014 Toward modeling clay mineral nanoparticles: The edge surfaces of pyrophyllite and their interaction with water The Journal of Physical Chemistry C 118 2730827317.CrossRefGoogle Scholar
Mathur, A. Sharma, P. and Cammarata, R.C., 2005 Negative surface energy — clearing up confusion Nature Materials 4 186186.CrossRefGoogle Scholar
Morton, J.D. Semrau, J.D. and Hayes, K.F., 2001 An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay Geochimica et Cosmochimica Acta 65 27092722.CrossRefGoogle Scholar
Overbeek, J.T.G., 1978 Microemulsions, a field at the border between lyophobic and lyophilic colloids Faraday Discussions 65 719.CrossRefGoogle Scholar
Ramberg, H., 1954 A theoretical approach to the thermal stabilities of hydrous minerals. 1. General principles as revealed by studies of hydroxides and oxyacids Journal of Geology 62 388398.CrossRefGoogle Scholar
Ramos-Tejada, M.M. Arroyo, F.J. Perea, R. and Duran, J.D.G., 2001 Scaling behavior of the rheological properties of montmorillonite suspensions: Correlation between interparticle interaction and degree of flocculation Journal of Colloid and Interface Science 235 251259.CrossRefGoogle ScholarPubMed
Rand, B. Pekenc, E. Goodwin, J.W. and Smith, R.W., 1980 Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions Journal of the Chemical Society-Faraday Transactions I 76 225235.CrossRefGoogle Scholar
Refson, K. Park, S.H. and Sposito, G., 2003 Ab initio computational crystallography of 2:1 clay minerals: 1. Pyrophyllite-1Tc Journal of Physical Chemistry B 107 1337613383.CrossRefGoogle Scholar
Roosen, A.R. McCormack, R.P. and Carter, W.C., 1998 Wulffman: A tool for the calculation and display of crystal shapes Computational Materials Science 11 1626.CrossRefGoogle Scholar
Rotenberg, B. Marry, V. Vuilleumier, R. Malikova, N. Simon, C. and Turq, P., 2007 Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics Geochimica et Cosmochimica Acta 71 50895101.CrossRefGoogle Scholar
Russell, J.D. Farmer, V.C. and Velde, B., 1970 Replacement of OH by OD in layer silicates, and identification of vibrations of these groups in infra-red spectra Mineralogical Magazine 37 869879.CrossRefGoogle Scholar
Sposito, G., 2008 The Chemistry of Soils 2nd edition Oxford, UK, and New York Oxford University Press.Google Scholar
Sposito, G. Park, S.H. and Sutton, R., 1999 Monte Carlo simulation of the total radial distribution function for interlayer water in sodium and potassium montmorillonites Clays and Clay Minerals 47 192200.CrossRefGoogle Scholar
Stevenson, F.J., 1994 Humus Chemistry: Genesis, Composition, Reactions 2nd edition New York John Wiley & Sons, Inc..Google Scholar
Stol, R.J. and DeBruyn, P.L., 1980 Thermodynamic stabilization of colloids Journal of Colloid and Interface Science 75 185198.CrossRefGoogle Scholar
Tazi, S. Rotenberg, B. Salanne, M. Sprik, M. and Sulpizi, M., 2012 Absolute acidity of clay edge sites from ab-initio simulations Geochimica et Cosmochimica Acta 94 111.CrossRefGoogle Scholar
Tombacz, E. and Szekeres, M., 2004 Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes Applied Clay Science 27 7594.CrossRefGoogle Scholar
Tournassat, C. Ferrage, E. Poinsignon, C. and Charlet, L., 2004 The titration of clay minerals: II. Structure-based model and implications for clay reactivity Journal of Colloid and Interface Science 273 234246.CrossRefGoogle ScholarPubMed
Wan, J. Tyliszczak, T. and Tokunaga, T.K., 2007 Organic carbon distribution, speciation, and elemental correlations within soil micro aggregates: Applications of STXM and NEXAFS spectroscopy Geochimica et Cosmochimica Acta 71 54395449.CrossRefGoogle Scholar
White, G.N. and Zelazny, L.W., 1988 Analysis and implications of the edge structure of dioctahedral phyllosilicates Clays and Clay Minerals 36 141146.CrossRefGoogle Scholar
Wulff, G., 1901 On the question of speed of growth and dissolution of crystal surfaces Zeitschrift für Kristallographie und Mineralogie 34 449530.CrossRefGoogle Scholar