Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T18:22:23.243Z Has data issue: false hasContentIssue false

Formation of Hydrotalcite-like Compounds During R7T7 Nuclear Waste Glass and Basaltic Glass Alteration

Published online by Cambridge University Press:  28 February 2024

A. Abdelouas
Affiliation:
Kernforschungszentrum Karlsruhe, INE, Postfach 3640, 76021 Karlsruhe, Deutschland Centre de Géochimie de la Surface, C.N.R.S., 1, rue Blessig, 67084 Strasbourg Cedex, France
J. L. Crovisier
Affiliation:
Centre de Géochimie de la Surface, C.N.R.S., 1, rue Blessig, 67084 Strasbourg Cedex, France
W. Lutze*
Affiliation:
Kernforschungszentrum Karlsruhe, INE, Postfach 3640, 76021 Karlsruhe, Deutschland
B. Fritz
Affiliation:
Centre de Géochimie de la Surface, C.N.R.S., 1, rue Blessig, 67084 Strasbourg Cedex, France
A. Mosser
Affiliation:
IPCMS Groupe Surfaces-Interfaces, 4, rue Blaise Pascal, 67070 Strasbourg Cedex, France
R. Müller
Affiliation:
Kernforschungszentrum Karlsruhe, INE, Postfach 3640, 76021 Karlsruhe, Deutschland
*
*Present address: University of New Mexico, 209 Farris Engineering Building, Albuquerque, New Mexico 87131.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Alteration experiments have been performed using RTT7 and synthetic basaltic glasses in MgCl2−CaCl2 salt solution at 190°C. The duration of experiments ranged from 0.25 to 463 days. The alteration products were studied by Scanning Electron Microscope (SEM), Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD) and Electron Spectrometry for Chemical Analysis (ESCA). For both glasses, the early alteration product is a hydrotalcite-like compound [Mg6Al2CO3(OH)16·4H2O] in which HPO42−, SO42− and Cl substitutes for CO32−. The measured basal spacing is 7.68 Å for the hydrotalcite formed from R7T7 glass and 7.62 Å for the hydrotalcite formed from basaltic glass which reflect the high Al/Al + Mg ratios x (0.34 ≤ x ≤ 0.46). The chemical microanalyses show that the hydrotalcite is subsequently covered by a silica-rich gel which evolves into saponite after a few months. These results support the use of basaltic glasses alteration patterns in Mg-rich solution, to understand the long-term behavior of R7T7 nuclear waste glass.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Abdelouas, A., 1992. Formation des minéraux argileux à partir de matériaux vitreux dans les saumures de lacs boliviens. Comparaison avec des échantillons altérés expérimentalement. Mém. D.E.A. Univ. Louis Pasteur, Strasbourg, 30 pp.Google Scholar
Andriambololona, Z., Godon, N., and Vernaz, E.. 1992 . R7T7 nuclear glass alteration in a saline medium. In situ experiments in the WIPP project. Appl. Geochem. Suppl. 1: 2332.CrossRefGoogle Scholar
Crovisier, J. L., Advocat, T., Petit, J. C., and Fritz, B.. Alteration of basaltic glass in Iceland as a natural analogue for nuclear waste glasses: Geochemical modelling with DISSOL. In Scientific Basis for Nuclear Waste Management XII. Lutze, W., and Ewing, R. C., 1988 eds. Pittsburgh: Materials Research Society 127: 5764.Google Scholar
Crovisier, J. L., Eberhart, J. P., Thomassin, J. H., Juteau, T., Touray, J. C., and Ehret, G.. 1982 . Interaction “eau de mer-verre basaltique” à 50°C. Formation d'un hydroxycarbonate et de produits silicatés amorphes (Al, Mg) et mal cristallisés (Al, Fe, Mg). Etude en microscopie électronique et par spectrométrie des photoélectrons (E.S.C.A.). C.R. Acad. Sci. Paris. 294: Série II, 989994.Google Scholar
Crovisier, J. L., Fritz, B., Grambow, B., and Eberhart, J. P.. Dissolution of basaltic glass in seawater. Experiments and thermodynamic modelling. In Scientific Basis for Nuclear Waste Management IX. Werme, L., 1985 ed. Pittsburgh: Materials Research Society 50: 273280.Google Scholar
Crovisier, J. L., Honnorez, J., and Eberhart, J. P.. 1987 . Dissolution of basaltic glass in seawater: Mechanism and rate. Geochim. Cosmochim. Acta 51: 29772990.CrossRefGoogle Scholar
Crovisier, J. L., Thomassin, J. H., Juteau, T., Eberhart, J. P., Touray, J. C., and Baillif, P.. 1983 . Experimental seawater-basaltic glass interaction at 50°C: Study of early developed phases by electron microscopy and X-ray photoelectron spectrometry. Geochim. Cosmochim. Acta 47: 377387.CrossRefGoogle Scholar
Ehret, G., Crovisier, J. L., and Eberhart, J. P.. 1986 . A new method for studying leached glasses: Analytical electron microscopy on ultramicrotomic thin sections. J. Non-crystal. Solids 86: 7279.CrossRefGoogle Scholar
Ewing, R. C., 1979. Natural glasses: Analogues for Radioactive Wastes forms. In Scientific Basis for Nuclear Waste Management I, McCarthy, G., ed. New York: Materials Research Society 1: 5768.CrossRefGoogle Scholar
Fritz, B., 1975. Etude thermodynamique et modélisation des réactions entre minéraux et solutions. Applications à la géochimie des altérations et des eaux continentales. Sci. Géol. Mémo., Univ. Louis Pasteur, Strasbourg 41: 152 pp.Google Scholar
Fritz, B., 1981. Etude thermodynamique et modélisation des réactions hydrothermales et diagénétiques. Sci. Géol. Mémo., Univ. Louis Pasteur, Strasbourg 65: 197 pp.Google Scholar
Gastuche, M. C., Brown, G., and Mortland, M. M.. 1967 . Mixed magnesium-aluminium hydroxides I. Clay Miner. 7: 177192.CrossRefGoogle Scholar
Grambow, B., 1985. A general rate equation for nuclear waste glass corrosion. In Scientific Basis for Nuclear Waste Management VIII. Jantsen, C. M., Stone, J. A., and Ewing, R. C., eds. Pittsburgh: Materials Research Society 44: 1527.Google Scholar
Grambow, B., and Müller, R.. Chemistry of glass corrosion in high saline brines. In Scientific Basis for Nuclear Waste Management XIII. Oversby, V. M., and Brown, P. W., 1990 eds. Pittsburgh: Materials Research Society 176: 229240.Google Scholar
Larsen, G., Plum, K. H., and Förster, H.. 1991 . Zeolites and other hydrothermal alteration products of synthetic glasses. Eur. J. Mineral. 3: 933941.CrossRefGoogle Scholar
Lutze, W., and Grambow, B.. 1992 . The effect of glass corrosion on near field chemistry. Radiochim. Acta 58/59: 37.CrossRefGoogle Scholar
Lutze, W., Grambow, B., Ewing, R. C., and Jercinovic, M. J.. The use of natural analogues in the long-term extrapolation of glass corrosion processes. In Proceedings of Symposium on “Natural Analogues in Radioactive Waste Disposal.” Côme, B., and Chapman, N. A., 1987 eds. Commission des Communautés Européennes, Bruxelles, 28–30 Avril. Bruxelles: Graham et Trotman Ltd, 142152.CrossRefGoogle Scholar
Lutze, W., Müller, R., and Montserrat, W.. Chemical corrosion of Cogema glass in high saline brines. In Scientific Basis for Nuclear Waste Management XII. Lutze, W., and Ewing, R. C., 1989 eds. Pittsburgh: Materials Research Society 127: 8188.Google Scholar
Malow, G., and Lutze, W.. 1984 . Alteration effects and leach rates of basaltic glasses: Implications for the long-term stability of nuclear waste borosilicate glasses. J. Non-crystal. Solids 67: 305322.CrossRefGoogle Scholar
Miyata, S., 1975. The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties I: The systems Mg2+-Al3+-NO3–, Mg2+-Al3+-Cl, Mg2+-Al3+-ClO4, Ni2+-Al3+-Cl and Zn2+-Al3+-Cl. Clays & Clay Miner. 23: 369375.CrossRefGoogle Scholar
Miyata, S., 1980. Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays & Clay Miner. 28: 5056.CrossRefGoogle Scholar
Miyata, S., 1983. Anion-exchange properties of hydrotalcite-like compounds. Clays & Clay Miner. 31: 305311.CrossRefGoogle Scholar
Nogues, J. L., Vernaz, E., and Jacquet-Francillon, N.. Nuclear glass corrosion mechanisms applied to the French LWR reference glass. In Scientific Basis for Nuclear Waste Management IX. Jantzen, C. M., Stone, J. A., and Ewing, R. C., 1985 eds. Pittsburgh: Materials Research Society 44: 8998.Google Scholar
Pacaud, F., Jacquet-Francillon, N., Terki, A., and Fillet, S.. R7T7 light water reference glass sensitivity to variations in chemical composition and operating parameters. In Scientific Basis for Nuclear Waste Management XII, Lutze, W., and Ewing, R. C., 1989 eds. Pittsburgh: Materials Research Society 127: 105112.Google Scholar
Pausch, I., Lohse, H. H., Schürmann, K., and Allmann, R.. 1986 . Syntheses of disordered and Al-rich hydrotalcite-like compounds. Clays & Clay Miner. 34: 507510.CrossRefGoogle Scholar
Petit, J. C., 1992. Reasoning by analogy: Rational foundation of natural analogue studies. Appl. Geochem. Suppl. 1: 911.CrossRefGoogle Scholar
Rother, A., Lutze, W., and Shubert-Bischoff, P.. Characterization of lanthanoid phases formed upon glass dissolution in salt solutions. In Scientific Basis for Nuclear Waste Management XV. Sombret, C. G., 1992 ed. Pittsburgh: Materials Research Society 257: 5764.Google Scholar
Schmitz, W., Singer, A., Backer, H., and Stoffers, P.. 1982 . Hydrothermal serpentine in a hess deep sediment core. Marine Geology 46: M17-M26.CrossRefGoogle Scholar
Sombret, C. G., 1987. Waste form for conditioning high level radioactive solutions. In The geological disposal of high level radioactive wastes. Brookins, D. G., ed. Athènes: Theophrastus Pub. S. A., 69159.Google Scholar
Thomassin, J. H., 1984. Etude expérimentale de l'altération des verres silicatés dans l'eau douce et en milieu océanique. Apport des méthodes d'analyse de surface des solides. Thèse, Sci., Université d'Orléans, 168 pp.Google Scholar
Thomassin, J. C., and Touray, J. H.. 1982 . L'hydrotalcite, un hydroxycarbonate transitoire précocément formé lors de l'interaction verre basaltique/eau de mer. Bull. Minéral. 105: 312319.CrossRefGoogle Scholar