Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-28T22:48:41.880Z Has data issue: false hasContentIssue false

Trace and Rare Earth Element Distribution and Mobility During Diagenetic Alteration of Volcanic Ash to Bentonite in Eastern Iranian Bentonite Deposits

Published online by Cambridge University Press:  01 January 2024

Alireza Namayandeh
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA School of Geology, College of Science, University of Tehran, Enghelab Avenue, P.O. Box 14155-6455, Tehran, Iran
Soroush Modabberi*
Affiliation:
School of Geology, College of Science, University of Tehran, Enghelab Avenue, P.O. Box 14155-6455, Tehran, Iran
Alberto López-Galindo
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (CSIC-Universidad de Granada), Avda. de las Palmeras, 4, 18100 Armilla, Granada, Spain
*
*E-mail address of corresponding author: modabberi@ut.ac.ir

Abstract

The chemical composition of the source magma along with the physiochemical conditions of the depositional environment are the main controlling factors in determining the behavior and mobility of trace elements and rare earth elements (REEs) during the transformation of volcanic ash to bentonite. The purpose of the present study was to determine the distribution pattern and mobility of trace elements and REEs in several bentonite deposits formed by diagenetic alteration of volcanic ash in shallow alkaline water in eastern Iran. Using geochemical and statistical data, the degree of weathering in the parent rocks and the distribution and mobility of trace elements and REEs during the alteration process at seven deposits (Chah-Taleb, Chah-Keshmir, Chah-Golestan, Chah-Pirouz, Gholeh-Gelia, Kharman-Sar, and Khal-Kooh) were studied. None of the parent rocks showed an advanced degree of depositional reworking and, therefore, their chemical composition is representative of the volcanic ash from which the bentonites were formed. In the chondrite-normalized REE patterns of both parent rocks and bentonites, the light rare earth elements (LREEs) were found to be enriched relative to the heavy rare earth elements (HREEs). The variation in δEu and δCe values suggested a high-temperature (<200°C), suboxic, aquatic environment in which the conversion of volcanic ash to bentonite occurred. In the bivariate correlation analysis, Si showed a strong inverse relationship with Al and LREEs, while large ion lithophile elements (LILEs), high field strength elements (HFSEs), HREEs, and LREEs displayed a positive correlation between the elements of their respective groups. The R2 values in the binary diagram of potential immobile elements against Al suggest a qualitative classification in which Ti, Gd, Ga, Pr, Tb, Nd, Sm, Ce, and Nb are considered immobile, and U, Dy, In, Sc, Hf, Zr, La, and Eu are considered to have had poor mobility during formation of the Eastern Iranian bentonite deposits.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arslan, M., Abd$įğlu, E., & Kadir, S. N. (2010). Mineralogy, geochemistry, and origin of bentonite in Upper Cretaceous pyroclastic units of the T$$irebolu area, Giresun, northeast Turkey. Clays and Clay Minerals, 58, 120141.CrossRefGoogle Scholar
Batchelor, R. A. (2014). Metabentonites from the Sandbian stage, Upper Ordovician, in Scotland–a geochemical comparison with their equivalents in Baltoscandia. Scottish Journal of Geology, 50, 159163.CrossRefGoogle Scholar
Batchelor, R. A., & Evans, J. (2000). Use of strontium isotope ratios and rare earth elements in apatite microphenocrysts for characterization and correlation of Silurian metabentonites: A Scandinavian case study. Norsk Geologisk Tidsskrift, 80, 38.CrossRefGoogle Scholar
Bau, M. (1991). Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93, 219230.CrossRefGoogle Scholar
Berberian, M., & King, G. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210265.CrossRefGoogle Scholar
Brantley, S. L. (2008). Kinetics of mineral dissolution. In Brantley, S. L., Kubicki, J. D., & White, A. F. (Eds.), Kinetics of Water-rock Interaction (pp. 151210). New York: Springer New York.CrossRefGoogle Scholar
Burger, K., Zhou, Y., & Ren, Y. (2002). Petrography and geochemistry of tonsteins from the 4th member of the Upper Triassic Xujiahe formation in southern Sichuan province, China. International Journal of Coal Geology, 49, 117.CrossRefGoogle Scholar
Caballero, E., & de Cisneros, C. J. (2017). Partitioning of minor, trace elements and rare earth elements in bentonite affecting by thermal alteration. Applied Clay Science, 147, 143152.CrossRefGoogle Scholar
Caballero, E., Reyes, E., Delgado, A., Huertas, F., & Linares, J. (1992). The formation of bentonite: Mass balance effects. Applied Clay Science, 6, 265276.CrossRefGoogle Scholar
Calarge, L. M., Meunier, A., Lanson, B., & Formoso, M. L. (2006). Chemical signature of two Permian volcanic ash deposits within a bentonite bed from Melo, Uruguay. Anais da Academia Brasileira de Ciências, 78, 525541.CrossRefGoogle ScholarPubMed
Chen, J., Algeo, T. J., Zhao, L., Chen, Z.-Q., Cao, L., Zhang, L., & Li, Y. (2015). Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of south China. Earth-Science Reviews, 149, 181202.CrossRefGoogle Scholar
Chorover, J., & Brusseau, M. L. (2008). Kinetics of sorption—desorption. In Brantley, S. L., Kubicki, J. D., & White, A. F. (Eds.), Kinetics of Water-rock Interaction (pp. 109149). New York: Springer New York.CrossRefGoogle Scholar
Christidis, G. E. (1998). Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece. Clays and Clay Minerals, 46, 379399.CrossRefGoogle Scholar
Christidis, G. (2001). Geochemical correlation of bentonites from Milos Island, Aegean, Greece. Clay Minerals, 36, 295306.CrossRefGoogle Scholar
Christidis, G. E., & Huff, W. D. (2009). Geological aspects and genesis of bentonites. Elements, 5, 9398.CrossRefGoogle Scholar
Christidis, G. E., Scott, P. W., & Marcopoulos, T. (1995). Origin of the bentonite deposits of eastern Milos, Aegean, Greece; geological, mineralogical and geochemical evidence. Clays and Clay Minerals, 43, 6377.CrossRefGoogle Scholar
Dai, S., Wang, X., Zhou, Y., Hower, J. C., Li, D., Chen, W., Zhu, X., & Zou, J. (2011). Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao coalfield, Chongqing, southwest China. Chemical Geology, 282, 2944.CrossRefGoogle Scholar
Dai, S., Ward, C. R., Graham, I. T., French, D., Hower, J. C., Zhao, L., & Wang, X. (2017). Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews, 175, 4474.CrossRefGoogle Scholar
dos Muchangos, A. C. (2006). The mobility of rare-earth and other elements in the process of alteration of rhyolitic rocks to bentonite (Lebombo volcanic mountainous chain, Mozambique). Journal of Geochemical Exploration, 88, 300303.CrossRefGoogle Scholar
Elderfield, H. (1988). The oceanic chemistry of the rare-earth elements. Philosophical Transactions of the Royal Society of London, A, 325, 105126.Google Scholar
Elliott, W. C., Gardner, D. J., Malla, P., & Riley, E. (2018). A new look at the occurrences of the rare-earth elements in the Georgia kaolins. Clays and Clay Minerals, 66, 245260.CrossRefGoogle Scholar
Fanti, F. (2009). Bentonite chemical features as proxy of late Cretaceous provenance changes: A case study from the western interior basin of Canada. Sedimentary Geology, 217, 112127.CrossRefGoogle Scholar
Foreman, B., Rogers, R., Deino, A., Wirth, K., & Thole, J. (2008). Geochemical characterization of bentonite beds in the Two Medicine formation (Campanian, Montana), including a new 40Ar/39Ar age. Cretaceous Research, 29, 373385.CrossRefGoogle Scholar
Göncüoglu, M., Günal-Türkmenoglu, A., Bozkaya, Ö., Ünlüce-Yücel, Ö., Okuyucu, C., & Yilmaz, $ID. (2016). Geological features and geochemical characteristics of late Devonian–early Carboniferous K-bentonites from northwestern Turkey. Clay Minerals, 51, 539562.CrossRefGoogle Scholar
Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram. Journal of Petrology, 48, 23412357.CrossRefGoogle Scholar
Hayashi, K.-I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 41154137.CrossRefGoogle ScholarPubMed
He, B., Zhong, Y.-T., Xu, Y.-G., & Li, X.-H. (2014). Triggers of Permo-Triassic boundary mass extinction in south China: The Siberian traps or paleo-Tethys ignimbrite flare-up? Lithos, 204, 258267.CrossRefGoogle Scholar
Hetherington, C. J., Nakrem, H. A., & Potel, S. (2011). Note on the composition and mineralogy of Wenlock Silurian bentonites from the Ringerike district: Implications for local and regional stratigraphic correlation and sedimentary environments. Norwegian Journal of Geology/Norsk Geologisk Tidsskrift, 91, 181192.Google Scholar
Hints, R., Kirsimäe, K., Somelar, P., Kallaste, T., & Kiipli, T. (2008). Multiphase Silurian bentonites in the Baltic palaeobasin. Sedimentary Geology, 209, 6979.CrossRefGoogle Scholar
Hodson, M. E. (2002). Experimental evidence for mobility of Zr and other trace elementsinsoils. Geochimica et Cosmochimica Acta, 66, 819828.CrossRefGoogle Scholar
Hong, H., Algeo, T. J., Fang, Q., Zhao, L., Ji, K., Yin, K., Wang, C., & Cheng, S. (2019). Facies dependence of the mineralogy and geochemistry of altered volcanic ash beds: An example from Permian-Triassic transition strata in southwestern China. Earth-Science Reviews, 190, 5888.CrossRefGoogle Scholar
Huff, W., Kolata, D., & Cross, T. (1989). Correlation of K-bentonite beds by chemical fingerprinting using multivariate statistics. In Cross, T. A. (Ed.), Quantitative Dynamic Stratigraphy (pp. 567577). New Jersey, USA: Prentice-Hall.Google Scholar
Huff, W., Merriman, R., Morgan, D., & Roberts, B. (1993). Distribution and tectonic setting of Ordovician K-bentonites in the United Kingdom. Geological Magazine, 130, 93100.CrossRefGoogle Scholar
Huff, W. D., Dronov, A. V., Sell, B., Kanygin, A. V., & Gonta, T. V. (2014). Traces of explosive volcanic eruptions in the Upper Ordovician of the Siberian platform. Estonian Journal of Earth Sciences, 63, 244250.Google Scholar
Inanli, F. Ö., Huff, W. D., & Bergström, S. M. (2009). The Lower Silurian (Llandovery). Osmundsberg K-bentonite in Baltoscandia and the British Isles: Chemical fingerprinting and regional correlation. GFF, 131, 269279.CrossRefGoogle Scholar
Irvine, T., & Baragar, W. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523548.CrossRefGoogle Scholar
Kacmaz, H. (2016). Major, trace and rare earth element (REE). characteristics of tuffs in the Yenice-Saraycιk area (Demirci, Manisa), western Anatolia, Turkey. Journal of Geochemical Exploration, 168, 169176.CrossRefGoogle Scholar
Kadir, S., Külah, T., Önalgil, N., Erkoyun, H., & Elliott, W. C. (2017). Mineralogy, geochemistry, and genesis of bentonites in Miocene volcanic-sedimentary units of the Ankara–Çankiri basin, central Anatolia, Turkey. Clays and Clay Minerals, 65, 6491.CrossRefGoogle Scholar
Khan, M. S. (1990). Geochemical studies on the basal Aravalli (Lower Proterozoic). volcanic rocks around Udaipur, Rajasthan. Aligarh Muslim University.Google Scholar
Kiipli, T., Kallaste, T., Nielsen, A. T., Schovsbo, N. H., & Siir, S. (2014). Geochemical discrimination of the Upper Ordovician Kinnekulle bentonite in the Billegrav-2 drill core section, Bornholm, denmark. Estonian Journal of Earth Sciences, 63, 264270.Google Scholar
Kiipli, T., Hints, R., Kallaste, T., Verš, E., & Voolma, M. (2017). Immobile and mobile elements during the transition of volcanic ash tobentonite – an example from the early Palaeozoic sedimentary section of the Baltic basin. Sedimentary Geology, 347, 148159.CrossRefGoogle Scholar
Laviano, R., & Mongelli, G. (1996). Geochemistry and mineralogy as indicators of parental affinity for Cenozoic bentonites: A case study from S. Croce di Magliano (southern Apennines, Italy). Clay Minerals, 31, 391401.CrossRefGoogle Scholar
Liao, Z., Hu, W., Cao, J., Wang, X., Yao, S., Wu, H., & Wan, Y. (2016). Heterogeneous volcanism across the Permian–Triassic boundary in south China and implications for the latest Permian mass extinction: New evidence from volcanic ash layers in the lower Yangtze region. Journal of Asian Earth Sciences, 127, 197210.CrossRefGoogle Scholar
MacRae, N., Nesbitt, H., & Kronberg, B. (1992). Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters, 109, 585591.CrossRefGoogle Scholar
McDonough, W. F., & Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
McHenry, L. J. (2009). Element mobility during zeolitic and argillic alteration of volcanic ash in a closed-basin lacustrine environment: Case study Olduvai gorge, Tanzania. Chemical Geology, 265, 540552.CrossRefGoogle Scholar
McLennan, S. M. (1989). Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21, 169200.Google Scholar
Merriman, R., & Roberts, B. (1990). Metabentonites in the Moffat shale group, Southern Uplands of Scotland: Geochemical evidence of ensialic marginal basin volcanism. Geological Magazine, 127, 259271.CrossRefGoogle Scholar
Modabberi, S., Namayandeh, A., López-Galindo, A., Viseras, C., Setti, M., & Ranjbaran, M. (2015). Characterization of Iranian bentonites to be used as pharmaceutical materials. Applied Clay Science, 116–11 7, 193201.CrossRefGoogle Scholar
Modabberi, S., Namayandeh, A., Setti, M., & López-Galindo, A. (2019). Genesis of the eastern Iranian bentonite deposits. Applied Clay Science, 168, 5667.CrossRefGoogle Scholar
Namayandeh, A., & Kabengi, N. (2019). Calorimetric study of the influence of aluminum substitution in ferrihydrite on sulfate adsorption and reversibility. Journal of Colloid and Interface Science, 540, 2029.CrossRefGoogle ScholarPubMed
Nath, B. N., Bau, M., Rao, B. R., & Rao, C. M. (1997). Trace and rare earth elemental variation in Arabian sea sediments through a transect across the oxygen minimum zone. Geochimica et Cosmochimica Acta, 61, 23752388.CrossRefGoogle Scholar
Nesbitt, H. W. (1979). Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206.CrossRefGoogle Scholar
Nesbitt, H. W., Markovics, G., & Price, R. C. (1980). Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44, 16591666.CrossRefGoogle Scholar
Özdamar, Ş., Ece, Ö. I., Uz, B., Boylu, F., Ercan, H. Ü., & Yanik, G. (2014). Element mobility during the formation of the Uzunisa-Ordu bentonite, NE Turkey, and potential applications. Clay Minerals, 49, 609633.CrossRefGoogle Scholar
Pang, K.-N., Chung, S.-L., Zarrinkoub, M. H., Mohammadi, S. S., Yang, H.-M., Chu, C.-H., Lee, H.-Y., & Lo, C.-H. (2012). Age, geochemical characteristics and petrogenesis of late Cenozoic intraplate alkali basalts in the Lut–Sistan region, eastern Iran. Chemical Geology, 306–307, 4053.CrossRefGoogle Scholar
Pang, K.-N., Chung, S.-L., Zarrinkoub, M. H., Khatib, M. M., Mohammadi, S. S., Chiu, H.-Y., Chu, C.-H., Lee, H.-Y., & Lo, C.-H. (2013). Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos, 180–181, 234251.CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956983.CrossRefGoogle Scholar
Pellenard, P., Deconinck, J. F., Huff, W. D., Thierry, J., Marchand, D., Fortwengler, D., & Trouiller, A. (2003). Characterization and correlation of Upper Jurassic (Oxfordian). bentonite deposits in the Paris basin and the subAlpine basin, France. Sedimentology, 50, 10351060.CrossRefGoogle Scholar
Renock, D., Landis, J. D., & Sharma, M. (2016). Reductive weathering of black shale and release of barium during hydraulic fracturing. Applied Geochemistry, 65, 7386.CrossRefGoogle Scholar
Rimstidt, J. D. (2014). Geochemical Rate Models: An Introduction to Geochemical Kinetics. Cambridge University Press.Google Scholar
Roberts, B., & Merriman, R. (1990). Cambrian and Ordovician metabentonites and their relevance to the origins of associated mudrocks in the northern sector of the Lower Palaeozoic Welsh marginal basin. Geological Magazine, 127, 3143.CrossRefGoogle Scholar
Schaefer, M. V., Guo, X., Gan, Y., Benner, S. G., Griffin, A. M., Gorski, C. A., Wang, Y., & Fendorf, S. (2017). Redox controls on arsenic enrichment and release from aquifer sediments in central Yangtze river basin. Geochimica et Cosmochimica Acta, 204, 104119.CrossRefGoogle Scholar
Siir, S., Kallaste, T., Kiipli, T., & Hints, R. (2015). Internal stratification of two thick Ordovician bentonites of Estonia: Deciphering primary magmatic, sedimentary, environmental and diagenetic signatures. Estonian Journal of Earth Sciences, 64, 140158.Google Scholar
Slack, J. F., & Stevens, B. P. J. (1994). Clastic metasediments of the early Proterozoic Broken Hill group, New South Wales, Australia: Geochemistry, provenance, and metallogenic significance. Geochimica et Cosmochimica Acta, 58, 36333652.CrossRefGoogle Scholar
Spears, D., & Kanaris-Sotiriou, R. (1979). A geochemical and mineralogical investigation of some British and other European tonsteins. Sedimentology, 26, 407425.CrossRefGoogle Scholar
Stocklin, J. (1968). Structural history and tectonics of Iran: A review. AAPG Bulletin, 52, 12291258.Google Scholar
Summa, L. L., & Verosub, K. L. (1992). Trace element mobility during early diagenesis of volcanic ash: Applications to stratigraphic correlation. Quaternary International, 13–14, 149157.CrossRefGoogle Scholar
Sverjensky, D. A. (1984). Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67, 7078.CrossRefGoogle Scholar
Voicu, G., & Bardoux, M. (2002). Geochemical behavior under tropical weathering of the Barama–Mazaruni greenstone belt at Omai gold mine, Guiana Shield. Applied Geochemistry, 17, 321336.CrossRefGoogle Scholar
Winchester, J., & Floyd, P. (1976). Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28, 459469.CrossRefGoogle Scholar
Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325343.CrossRefGoogle Scholar
Wray, D. S. (1995). Origin of clay-rich beds in Turonian chalks from Lower Saxony, Germany—a rare-earth element study. Chemical Geology, 119, 161173.CrossRefGoogle Scholar
Xing, L., Zhou, M., Qi, L., & Huang, Z. (2015). Discussiononthe PGE anomalies and source materials of K-bentonite (Bed 5) in the Lower Cambrian Meishucun section, Yunnan. Chinese Journal of Geochemistry, 34, 346361.CrossRefGoogle Scholar
Yildiz, A., & Dumlupunar, I. (2009). Mineralogy and geochemical affinities of bentonites from Kapιkaya (Eskişhir, western Turkey). Clay Minerals, 44, 339360.CrossRefGoogle Scholar
Yildiz, A., & Kuscu, M. (2004). Origin of the basoren (Kutahya, W Turkey) bentonite deposits. Clay Minerals, 39, 219231.CrossRefGoogle Scholar
Yusoff, Z. M., Ngwenya, B. T., & Parsons, I. (2013). Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349, 7186.CrossRefGoogle Scholar
Zhou, L., & Kyte, F. T. (1988). The Permian-Triassic boundary event: A geochemical study of three Chinese sections. Earth and Planetary Science Letters, 90, 411421.CrossRefGoogle Scholar
Zhou, Y., Bohor, B. F., & Ren, Y. (2000). Trace element geochemistry of altered volcanic ash layers (tonsteins). in late Permian coalbearing formations of eastern Yunnan and western Guizhou provinces, China. International Journal of Coal Geology, 44, 305324.CrossRefGoogle Scholar
Zielinski, R. A. (1982). The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colorado, U.S.A. Chemical Geology, 35, 185204.CrossRefGoogle Scholar
Zielinski, R. A. (1985). Element mobility during alteration of silicic ash to kaolinite—a study of tonstein. Sedimentology, 32, 567579.CrossRefGoogle Scholar
Supplementary material: File

Namayandeh et al. supplementary material
Download undefined(File)
File 227.3 KB