Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-22T09:54:29.330Z Has data issue: false hasContentIssue false

Influence of Montmorillonite Nanoclay Content on the Optical, Thermal, Mechanical, and Barrier Properties of Low-Density Polyethylene

Published online by Cambridge University Press:  01 January 2024

Nattinee Bumbudsanpharoke
Affiliation:
Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, 26493, Gangwon-do, Republic of Korea
Wooseok Lee
Affiliation:
Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, 26493, Gangwon-do, Republic of Korea
Jae Chun Choi
Affiliation:
Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong, 28159, Chungcheongbuk-do, Republic of Korea
Se-Jong Park
Affiliation:
Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong, 28159, Chungcheongbuk-do, Republic of Korea
Meekyung Kim
Affiliation:
Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong, 28159, Chungcheongbuk-do, Republic of Korea
Seonghyuk Ko*
Affiliation:
Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, 26493, Gangwon-do, Republic of Korea
*
*E-mail address of corresponding author: s.ko@yonsei.ac.kr

Abstract

Although low density polyethylene (LDPE) has long been widely used in packaging applications, some limitations in its use still exist and are due to its relatively poor gas barrier properties and low mechanical strength which can restrict its extensive use for more advanced applications, such as electronic and pharmaceutical packaging. The purpose of this study was to investigate the possibility of using montmorillonite (MMT) nanoclay as a means to enhance the thermal, mechanical, and barrier properties of LDPE prepared via melt extrusion. The level of exfoliated dispersion of the MMT nanoclay in the prepared LDPE-MMT composite was confirmed using transmission electron microscopy (TEM). The relationship between the resulting morphology and the thermal, mechanical, and barrier properties as a function of the MMT content was evaluated. The results showed that incorporating >3 wt.% of MMT nanoclay produced significant changes in the morphology of the LDPE-MMT nanoclay composite in that the segregated matrix adopted an oriented arrangement of exfoliated clay platelets. Thermogravimetric analysis (TGA) showed that the thermal stability of LDPE improved significantly as a result of MMT nanoclay incorporation. Furthermore, differential scanning calorimetry (DSC) analysis indicated that increasing clay content above 3 wt.% effectively reduces the crystallinity of LDPE-MMT composites through the suppression effect. The tensile strength of LDPE increased gradually with an increased content of MMT nanoclay and the maximum value of 16.89 N/mm2 was obtained at 10 wt.% MMT content. This value represents a 40.87% increase relative to the tensile strength of the pristine LDPE. Barrier properties of LDPE and LDPE-MMT nanoclay composites were assessed by examining the permeability with respect to oxygen and water vapor. As the content of MMT nanoclay was increased to 10 wt.%, the permeability of the nanocomposite films to oxygen and water vapor notably decreased to 42.8% and 26.2%, respectively.

Type
Article
Copyright
Copyright © Clay Minerals Society 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, A. Raheja, A. Natarajan, T.S. and Chandra, T.S., 2014 Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread Innovative Food Science & Emerging Technologies 26 424430.CrossRefGoogle Scholar
Akbari, B. and Bagheri, R., 2014 Influence of nanoclay on morphology, mechanical properties and deformation mechanism of polystyrene Polymer-Plastics Technology and Engineering 53 156161.CrossRefGoogle Scholar
Albdiry, M.T. Yousif, B.F. Ku, H. and Lau, K.T., 2013 A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites Journal of Composite Materials 47 10931115.CrossRefGoogle Scholar
Arora, A. Choudhary, V. and Sharma, D.K., 2011 Effect of clay content and clay/surfactant on the mechanical, thermal and barrier properties of polystyrene/organoclay nanocomposites Journal of Polymer Research 18 843857.CrossRefGoogle Scholar
Arunvisut, S. Phummanee, S. and Somwangthanaroj, A., 2007 Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites Journal of Applied Polymer Science 106 22102217.CrossRefGoogle Scholar
ASTM D882-02 (2002) Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials, Philadelphia, USA.Google Scholar
Ataeefard, M. and Moradian, S., 2011a Polypropylene/organoclay nanocomposites: Effects of clay content on properties Polymer-Plastics Technology and Engineering 50 732739.CrossRefGoogle Scholar
Ataeefard, M. and Moradian, S., 2011b Surface properties of polypropylene/organoclay nanocomposites Applied Surface Science 257 23202326.CrossRefGoogle Scholar
Azizi, H. Morshedian, J. Barikani, M. and Wagner, M.H., 2010 Effect of layered silicate nanoclay on the properties of silane crosslinked linear low-density polyethylene (LLDPE) Express Polymer Letters 4 252262.CrossRefGoogle Scholar
Bodaghi, H. Mostofi, Y. Oromiehie, A. Ghanbarzadeh, B. and Hagh, Z.G., 2015 Synthesis of clay-TiO2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application Journal of Applied Polymer Science 132 41764(4176141768).CrossRefGoogle Scholar
Bumbudsanpharoke, N. Lee, W. and Ko, S., 2017 A comprehensive feasibility study on the properties of LDPE-Ag nanocomposites for food packaging applications Polymer Composites 19.CrossRefGoogle Scholar
Chafidz, A. Kaavessina, M. Al-Zahrani, S. and Al-Otaibi, M.N., 2014 Polypropylene/organoclay nanocomposites prepared using a Laboratory Mixing Extruder (LME): Crystallization, thermal stability and dynamic mechanical properties Journal of Polymer Research 21 118.CrossRefGoogle Scholar
Chen, G.M. Qi, Z.N. and Shen, D.Y., 2000 Shear-induced ordered structure in polystyrene/clay nanocomposite Journal of Materials Research 15 351356.CrossRefGoogle Scholar
Chen, J.B. Xu, J.Z. Xu, H. Li, Z.M. Zhong, G.J. and Lei, J., 2015 The crystallization behavior of biodegradable poly(- butylene succinate) in the presence of organically modified clay with a wide range of loadings Chinese Journal of Polymer Science 33 576586.CrossRefGoogle Scholar
Chen, L. Wong, S.C. and Pisharath, S., 2003 Fracture properties of nanoclay-filled polypropylene Journal of Applied Polymer Science 88 32983305.CrossRefGoogle Scholar
Decker, J.J. Meyers, K.P. Paul, D.R. Schiraldi, D.A. Hiltner, A. and Nazarenko, S., 2015 Polyethylene-based nanocomposites containing organoclay: A new approach to enhance gas barrier via multilayer coextrusion and interdiffusion Polymer 61 4254.CrossRefGoogle Scholar
Deka, B.K. and Maji, T.K., 2010 Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite Composites Science and Technology 70 17551761.CrossRefGoogle Scholar
Di Maio, E. Iannace, S. Sorrentino, L. and Nicolais, L., 2004 Isothermal crystallization in PCL/clay nanocomposites investigated with thermal and rheometric methods Polymer 45 88938900.CrossRefGoogle Scholar
Driscoll, R.H. Paterson, J.L., Rahman, M.S., 1999 Packaging and food preservation Handbook of Food Preservation New York Marcel Dekker 687.Google Scholar
Farhoodi, M., 2016 Nanocomposite Materials for Food Packaging Applications: Characterization and Safety Evaluation Food Engineering Reviews 8 3551.CrossRefGoogle Scholar
Follain, N. Alexandre, B. Chappey, C. Colasse, L. Mederic, P. and Marais, S., 2016 Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions Composites Science and Technology 136 1828.CrossRefGoogle Scholar
Fu, J. and Naguib, H.E., 2006 Effect of nanoclay on the mechanical properties of PMMA/clay nanocomposite foams Journal of Cellular Plastics 42 325342.CrossRefGoogle Scholar
Ganguly, S. Dana, K. Mukhopadhyay, T.K. Parya, T. and Ghatak, S., 2011 Organophilic nano clay: A comprehensive review Transactions of the Indian Ceramic Society 70 189206.CrossRefGoogle Scholar
Golebiewski, J. Rozanski, A. Dzwonkowski, J. and Galeski, A., 2008 Low density polyethylene-montmorillonite nanocomposites for film blowing European Polymer Journal 44 270286.CrossRefGoogle Scholar
Grim, R.E., 1942 Modern concepts of clay materials The Journal of Geology 50 225275.CrossRefGoogle Scholar
Guggenheim, S. and Martin, R., 1995 Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees Clays and Clay Minerals 43 255256.CrossRefGoogle Scholar
Gul, S. Kausar, A. Muhammad, B. and Jabeen, S., 2016 Research progress on properties and applications of polymer/clay nanocomposite Polymer-Plastics Technology and Engineering 55 684703.CrossRefGoogle Scholar
Guo, J.M. Li, X.Y. Mu, C.D. Zhang, H.G. Qin, P. and Li, D.F., 2013 Freezing-thawing effects on the properties of dialdehyde carboxymethyl cellulose crosslinked gelatin- MMT composite films Food Hydrocolloids 33 273279.CrossRefGoogle Scholar
Hemati, F. and Garmabi, H., 2011 Compatibilised LDPE/LLDPE/nanoclay nanocomposites: I. Structural, mechanical, and thermal properties The Canadian Journal of Chemical Engineering 89 187196.CrossRefGoogle Scholar
Hillier, S., Middleton, G.V. Church, M.J. Coniglio, M. Hardie, L.A. and Longstaffe, F.J., 2003 Clay Mineralogy Encyclopaedia of Sediments and Sedimentary Rocks Dordrecht, The Netherlands Academic Publishers 139142.Google Scholar
Homminga, D.S. Goderis, B. Mathot, V.B.F. and Groeninckx, G., 2006 Crystallization behavior of polymer/montmorillonite nanocomposites. Part III. Polyamide-6/montmorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration Polymer 47 16301639.CrossRefGoogle Scholar
Huang, H.D. Zhou, S.Y. Ren, P.G. Ji, X. and Li, Z.M., 2015 Improved mechanical and barrier properties of low-density polyethylene nanocomposite films by incorporating hydrophobic graphene oxide nanosheets RSC Advances 5 8073980748.CrossRefGoogle Scholar
Kim, S.G. Lofgren, E.A. and Jabarin, S.A., 2013 Dispersion of nanoclays with poly(ethylene terephthalate) by melt blending and solid state polymerization Journal of Applied Polymer Science 127 22012212.CrossRefGoogle Scholar
Kontou, E. and Niaounakis, M., 2006 Thermo-mechanical properties of LLDPE/SiO2 nanocomposites Polymer 47 12671280.CrossRefGoogle Scholar
Lan, T., Bagchi, D. Bagchi, M. Moriyama, H. and Shahidi, F., 2012 Nanocomposites for food packaging: An overview Bionanotechnology: A Revolution in Food, Biomedical and Health Sciences West Sussex, UK John Wiley & Son 406413.Google Scholar
Landry, V. Blanchet, P. and Riedl, B., 2010 Mechanical and optical properties of clay-based nanocomposites coatings for wood flooring Progress in Organic Coatings 67 381388.CrossRefGoogle Scholar
Lange, S. Arroval, T. Saar, R. Kink, I. Aarik, J. and Krumme, A., 2015 Oxygen barrier properties of Al2O3- and TiO2-coated LDPE films Polymer-Plastics Technology and Engineering 54 301304.CrossRefGoogle Scholar
LeBaron, P.C. Wang, Z. and Pinnavaia, T.J., 1999 Polymerlayered silicate nanocomposites: An overview Applied Clay Science 15 1129.CrossRefGoogle Scholar
Liu, X.H. and Wu, Q.J., 2001 PP/clay nanocomposites prepared by grafting-melt intercalation Polymer 42 1001310019.CrossRefGoogle Scholar
Majdzadeh-Ardakani, K. Lofgren, E.A. and Jabarin, S.A., 2014 The effect of particle size distribution on the dispersion of nanoclays in poly(ethylene terephthalate)/clay nanocomposites Journal of Reinforced Plastics and Composites 33 358368.CrossRefGoogle Scholar
Majeed, K. Hassan, A. and Abu Bakar, A., 2014 Influence of maleic anhydride-grafted polyethylene compatibiliser on the tensile, oxygen barrier and thermal properties of rice husk and nanoclay-filled low-density polyethylene composite films Journal of Plastic Film & Sheeting 30 120140.CrossRefGoogle Scholar
Majeed, K. Jawaid, M. Hassan, A. Abu Bakar, A. Khalil, HPSA Salema, A.A. and Inuwa, I., 2013 Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites Materials & Design 46 391410.CrossRefGoogle Scholar
Marsh, K. and Bugusu, B., 2007 Food packaging - Roles, materials, and environmental issues Journal of Food Science 72 R39R55.CrossRefGoogle ScholarPubMed
Meri, R.M. Zicans, J. Maksimovs, R. Ivanova, T. Kalnins, M. Berzina, R. and Japins, G., 2014 Elasticity and longterm behavior of recycled polyethylene terephthalate (rPET)/montmorillonite (MMT) composites Composite Structures 111 453458.CrossRefGoogle Scholar
Modesti, M. Lorenzetti, A. Bon, D. and Besco, S., 2006 Thermal behaviour of compatibilised polypropylene nanocomposite: Effect of processing conditions Polymer Degradation and Stability 91 672680.CrossRefGoogle Scholar
Monica, A.P. Bernabé, L.R. Karla, A.G.M. Víctor, H.C.R. Miguel, M. Johanna, C. and Álvaro, M., 2014 Low density polyethylene (LDPE) nanocomposites with passive and active barrier properties Journal of the Chilean Chemical Society 59 24422446.CrossRefGoogle Scholar
Morgan, A.B. and Gilman, J.W., 2003 Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative study Journal of Applied Polymer Science 87 13291338.CrossRefGoogle Scholar
Morgan, G.A. and Griego, O.V., 1998 Easy Use and Interpretation of SPSS for Windows: Answering Research Questions with Statistics New Jersey, USA Lawrence Erlbaum Associates Inc..Google Scholar
Mudaliar, A. Yuan, Q. and Misra, R., 2006 On surface deformation of melt-intercalated polyethylene-clay nanocomposites during scratching Polymer Engineering & Science 46 16251634.CrossRefGoogle Scholar
Nair, R.R. Hashimi, N.H. and Rao, V.P., 1982 Distribution and dispersal of clay-minerals on the western continentalshelf of India Marine Geology 50 M1M9.CrossRefGoogle Scholar
Nasiri, A. Peyron, S. Gastaldi, E. and Gontard, N., 2016 Effect of nanoclay on the transfer properties of immanent additives in food packages Journal of Materials Science 51 97329748.CrossRefGoogle Scholar
Noh, M.W. and Lee, D.C., 1999 Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization Polymer Bulletin 42 619626.CrossRefGoogle Scholar
Olewnik, E. Garman, K. and Czerwinski, W., 2010 Thermal properties of new composites based on nanoclay, polyethylene and polypropylene Journal of Thermal Analysis and Calorimetry 101 323329.CrossRefGoogle Scholar
Panwar, A. Choudhary, V. and Sharma, D.K., 2011 A review: Polystyrene/clay nanocomposites Journal of Reinforced Plastics and Composites 30 446459.CrossRefGoogle Scholar
Paul, P. Hussain, S. Bhattacharjee, D. and Pal, M., 2013 Preparation of polystyrene-clay nanocomposite by solution intercalation technique Bulletin of Materials Science 36 361366.CrossRefGoogle Scholar
Pavlidou, S. and Papaspyrides, C.D., 2008 A review on polymer-layered silicate nanocomposites Progress in Polymer Science 33 11191198.CrossRefGoogle Scholar
Pujala, R.K., 2014 Dispersion Stability, Microstructure and Phase Transition of Anisotropic Nanodiscs London Springer International Publishing.CrossRefGoogle Scholar
Qi, R.R. Jin, X. and Zhou, C.X., 2006 Preparation and properties of polyethylene-clay nanocomposites by an in situ graft method Journal of Applied Polymer Science 102 49214927.CrossRefGoogle Scholar
Rachtanapun, P. Rachtanapun, C., Sun, D.-W., 2011 Vacuum packaging Handbook of Frozen Food Processing and Packaging 2 Florida, USA CRC Press 861874.Google Scholar
Rangasamy, L. Shim, E. and Pourdeyhimi, B., 2011 Structure and tensile properties of nanoclay-polypropylene pylene fibers produced by melt spinning Journal of Applied Polymer Science 121 410419.CrossRefGoogle Scholar
Ray, S.S., 2013 Clay-containing Polymer Nanocomposites: From Fundamentals to Real Applications Oxford, UK Elsevier.Google Scholar
Sadeghipour, H. Ebadi-Dehaghani, H. Ashouri, D. Mousavian, S. Hashemi-Fesharaki, M. and Gahrouei, M.S., 2013 Effects of modified and non-modified clay on the rheological behavior of high density polyethylene Composites Part B: Engineering 52 164171.CrossRefGoogle Scholar
Santos, K.S. Demori, R. Mauler, R.S. Liberman, S.A. and Oviedo, M.A.S., 2013 The influence of screw configurations and feed mode on the dispersion of organoclay on PP Polimeros-Ciencia E Tecnologia 23 175181.CrossRefGoogle Scholar
Scarfato, P. Incarnato, L. Di Maio, L. Dittrich, B. and Schartel, B., 2016 Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites Composites Part B: Engineering 98 444452.CrossRefGoogle Scholar
Sepet, H. Tarakcioglu, N. and Misra, R.D.K., 2016 Investigation of mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites produced industrially by melt mixing approach Journal of Composite Materials 50 31053116.CrossRefGoogle Scholar
Shojaee-Aliabadi, S. Mohammadifar, M.A. Hosseini, H. Mohammadi, A. Ghasemlou, M. Hosseini, S.M. Haghshenas, M. and Khaksar, R., 2014 Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay International Journal of Biological Macromolecules 69 282289.CrossRefGoogle Scholar
Siengchin, S., Lin, T., 2011 Nano-scale reinforcing and toughening thermoplastics: Processing, structure and mechanical properties Nanofibers-Production, Properties and Functional Applications Croatia InTech 215240.Google Scholar
Silva, B.L. Nack, F.C. Lepienski, C.M. Coelho, L.A.F. and Becker, D., 2014 Influence of intercalation methods in properties of clay and carbon nanotube and high density polyethylene nanocomposites Materials Research 17 16281636.CrossRefGoogle Scholar
Sorrentino, A. Gorrasi, G. and Vittoria, V., 2007 Potential perspectives of bio-nanocomposites for food packaging applications Trends in Food Science & Technology 18 8495.CrossRefGoogle Scholar
Tanniru, M. Yuan, Q. and Misra, R., 2006 On significant retention of impact strength in clay-reinforced high-density polyethylene (HDPE) nanocomposites Polymer 47 21332146.CrossRefGoogle Scholar
Uddin, F., 2008 Clays, nanoclays, and montmorillonite minerals Metallurgical and Materials Transactions A 39 28042814.CrossRefGoogle Scholar
Venkatesh, G. Deb, A. Karmarkar, A. and Chauhan, S.S., 2012 Effect of nanoclay content and compatibilizer on viscoelastic properties of montmorillonite/polypropylene nanocomposites Materials & Design 37 285291.CrossRefGoogle Scholar
Verghese, K. Crossin, E. Jollands, M., Verghese, K. Lewis, H. and Fitzpatrick, L., 2012 Packaging materials Packaging for Sustainability California, USA Springer 211.CrossRefGoogle Scholar
Villarroel, M. Fahl, N. De Sousa, A.M. and de Oliveira, O.B., 2011 Direct esthetic restorations based on translucency and opacity of composite resins Journal of Esthetic and Restorative Dentistry 23 7387.CrossRefGoogle ScholarPubMed
Vyas, A. and Iroh, J.O., 2014 Thermal behavior and structure of clay/nylon-6 nanocomposite synthesized by in situ solution polymerization Journal of Thermal Analysis and Calorimetry 117 3952.CrossRefGoogle Scholar
Wang, J.C. Xu, C. Hu, H. Wan, L. Chen, R. Zheng, H. Liu, F. Zhang, M. Shang, X. and Wang, X., 2011 Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent Journal of Nanoparticle Research 13 869878.CrossRefGoogle Scholar
Wunderlich, B. and Czornyj, G., 1977 A study of equilibrium melting of polyethylene Macromolecules 10 906913.CrossRefGoogle Scholar
Zanetti, M. Lomakin, S. and Camino, G., 2000 Polymer layered silicate nanocomposites Macromolecular Materials and Engineering 279 19.3.0.CO;2-Q>CrossRefGoogle Scholar
Zazoum, B. and David, E. A., 2013 LDPE/HDPE/clay nanocomposites: Effects of compatibilizer on the structure and dielectric response Journal of Nanotechnology 2013 138457.CrossRefGoogle Scholar
Zazoum, B. David, E. and Ngô, A.D., 2014 Structural and dielectric studies of LLDPE/O-MMT nanocomposites Transactions on Electrical and Electronic Materials 15 235240.CrossRefGoogle Scholar
Zbik, M.S. and Frost, R.L., 2010 Influence of smectite suspension structure on sheet orientation in dry sediments: XRD and AFM applications Journal of Colloid and Interface Science 346 311316.CrossRefGoogle ScholarPubMed
Zhong, Y. Janes, D. Zheng, Y. Hetzer, M. and De Kee, D., 2007 Mechanical and oxygen barrier properties of organoclay-polyethylene nanocomposite films Polymer Engineering and Science 47 11011107.CrossRefGoogle Scholar