Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-27T23:28:54.644Z Has data issue: false hasContentIssue false

Clay Mineralogy of Surface Sediments in the Three Gorges Reservoir: Implications for Sediment Provenances and Weathering Regimes

Published online by Cambridge University Press:  01 January 2024

Shuai Wang
College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, Nanjing 211100, China
Wenbo Rao*
College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, Nanjing 211100, China
Jin Qian
College of Environment, Gulou Campus of Hohai University, Nanjing 210098, China
Mengying He
School of Geography Science, Nanjing Normal University, Nanjing 210046, China
Changping Mao
College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, Nanjing 211100, China
Kun Li
College of Environment, Gulou Campus of Hohai University, Nanjing 210098, China
Yuexing Feng
Radiogenic Isotope Facility, The University of Queensland, Brisbane, QLD 4072, Australia
Jianxin Zhao
Radiogenic Isotope Facility, The University of Queensland, Brisbane, QLD 4072, Australia
*E-mail address of corresponding author:


Knowledge of clay mineralogy is essential for understanding the source areas and weathering environments of fluvial sediments, particularly in large reservoirs facing serious problems with sediment deposition, such as the Three Gorges Reservoir (TGR) in east-central China. The purpose of the present study was to identify the sediment provenances and weathering regimes contributing to the sediment load in the TGR by determining the clay-mineral and geochemical compositions of surface sediments during various seasons. X-ray diffractometry and scanning electron microscopy (SEM) were used to identify the clay minerals. The results showed that illite was the dominant mineral, followed in order by kaolinite, chlorite, and montmorillonite. From a mineralogical perspective, distal sources were the main contributors to the TGR sediments, and regional sources (surrounding tributaries) also contributed much during the three seasons, while proximal sources (hillslope soils) supplied sediment in the flood season but not in the other two seasons. The geochemical and hydrological data generally supported the mineralogical results. In the flood season, the chemical indices of the TGR sediments were >0.4, showing that the sediments contained Al-rich illite minerals and experienced intense hydrolysis. In the other two seasons the TGR sediments were enriched in Fe- and Mg-rich illite minerals, resulting from strong physical weathering. Furthermore, precipitation, rather than air temperature or latitude, was the factor that controlled weathering intensity. These findings provide deep insights into the sediment cycle and chemical weathering in this large reservoir basin.

Copyright © The Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adriaens, R., Zeelmaekers, E., Fettweis, M., Vanlierde, E., Vanlede, J., Stassen, P., Elsen, J., Środoń, J., & Vandenberghe, N. (2018). Quantitative clay mineralogy as provenance indicator for recent muds in the southern North Sea. Marine Geology, 398, 4858. Scholar
Bainbridge, Z., Lewis, S., Smithers, S., Wilkinson, S., Douglas, G., Hillier, S., & Brodie, J. (2016). Clay mineral source tracing and characterisation of Burdekin River (NE Australia) and flood plume fine sediment. Journal of Soils and Sediments, 16, 687706. Scholar
Bao, Y., Gao, P., & He, X. (2015). The water-level fluctuation zone of Three Gorges Reservoir – A unique geomorphological unit. Earth-Science Reviews, 150, 1424. Scholar
Bao, Y., He, X., Wen, A., Gao, P., Tang, Q., Yan, D., & Long, Y. (2018). Dynamic changes of soil erosion in a typical disturbance zone of China's Three Gorges Reservoir. Catena, 169, 128139. Scholar
Bi, L., Yang, S., Li, C., Guo, Y., Wang, Q., Liu, J. T., & Yin, P. (2015). Geochemistry of river-borne clays entering the East China Sea indicates two contrasting typesof weathering and sediment transport processes. Geochemistry, Geophysics, Geosystems, 16, 30343052.CrossRefGoogle Scholar
Biscaye, P. E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.CrossRefGoogle Scholar
Chamley, H. (1989). Clay Sedimentology (pp. 1623). Berlin: Springer.CrossRefGoogle Scholar
Chappell, J., Zheng, H., & Fifield, K. (2006). Yangtse River sediments and erosion rates from source to sink traced with cosmogenic 10Be: Sediments from major rivers. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 7994. Scholar
Chen, X., Yan, Y., Fu, R., Dou, X., & Zhang, E. (2008). Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period: A discussion. Quaternary International, 186, 5564. Scholar
CNEMC (China National Environmental Monitoring Centre) (1997–2017). Bulletin of ecological and environmental monitoring of the Three Gorges Project in the Yangtze River. PR China: Ministry of Environment Protection. (in Chinese)Google Scholar
Cook, H. E., Johnson, P. D., Matti, J. C., & Zemmels, I. (1975). Methods of Sample Preparation and X-Ray Diffraction Data Analysis, X-Ray Minerology Laboratory, Deep Sea Drilling Project, University of California, Riverside. Initial Reports of the DSDP, 28, 9991007.Google Scholar
CWRC (Changjiang Water Resource Commission) (2003–2017). Changjiang Sediment Bulletin. Wuhan: Changjiang Press (in Chinese).Google Scholar
Ehrmann, W. (1998). Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 213231. Scholar
Fu, B. J., Wu, B. F., , Y. H., Xu, Z. H., Cao, J. H., Niu, D., Yang, G. S., & Zhou, Y. M. (2010). Three Gorges Project: Efforts and challenges for the environment. Progress in Physical Geography, 34, 741754. Scholar
Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., & Villa, I. M. (2014). Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology, 366, 6174. Scholar
Gingele, F. X., De Deckker, P., & Hillenbrand, C. D. (2001). Clay mineral distribution in surface sediments between Indonesia and NW Australia – Source and transport by ocean currents. Marine Geology, 179, 135146. Scholar
Godard, V., Lavé, J., Carcaillet, J., Cattin, R., Bourlès, D., & Zhu, J. (2010). Spatial distribution of denudation in Eastern Tibet and regressive erosion of plateau margins. Tectonophysics, 491, 253274. Scholar
Gürel, A. (2017). Geology, mineralogy, and geochemistry of late Miocene paleosol and calcrete in the western part of the Central Anatolian Volcanic Province. Geoderma, 302, 2238. Scholar
Gürel, A., & Özcan, S. (2016). Paleosol and dolocrete associated clay mineral occurrences in siliciclastic red sediments of the Late Miocene Kömişini Formation of the Tuzgölü basin in central Turkey. Catena, 143, 102113. Scholar
Guyot, J. L., Jouanneau, J. M., Soares, L., Boaventura, G. R., Maillet, N., & Lagane, C. (2007). Clay mineral composition of river sediments in the Amazon Basin. Catena, 71, 340356. Scholar
He, M., Zheng, H., Huang, X., Jia, J., & Li, L. (2013). Yangtze River sediments from source to sink traced with clay mineralogy. Journal of Asian Earth Sciences, 69, 6069. Scholar
He, M., Zheng, H., Clift, P. D., Tada, R., Wu, W., & Luo, C. (2015). Geochemistry of fine-grained sediments in the Yangtze River and the implications for provenance and chemical weathering in East Asia. Progress in Earth and Planetary Science, 2, 32. Scholar
Huang, Y., Wang, J., & Yang, M. (2019). Unexpected sedimentation patterns upstream and downstream of the Three Gorges Reservoir: Future risks. International Journal of Sediment Research, 34, 108117. Scholar
Khan, M. H. R., Liu, J., Liu, S., Seddique, A. A., Cao, L., & Rahman, A. (2019). Clay mineral compositions in surface sediments of the Ganges-Brahmaputra-Meghna river system of Bengal Basin, Bangladesh. Marine Geology, 412, 2736. Scholar
Kong, P., Zheng, Y., & Fu, B. (2011). Cosmogenic nuclide burial ages and provenance of Late Cenozoic deposits in the Sichuan Basin: Implications for Early Quaternary glaciations in east Tibet. Quaternary Geochronology, 6, 304312. Scholar
Li, Q., Yu, M., Lu, G., Cai, T., Bai, X., & Xia, Z. (2011). Impacts of the Gezhouba and Three Gorges Reservoirs on the sediment regime in the Yangtze River, China. Journal of Hydrology, 403, 224233. Scholar
Li, C. S., Shi, X. F., Kao, S. J., Te Chen, M., Liu, Y. G., Fang, X. S., , H. H., Zou, J. J., Liu, S. F., & Qiao, S. Q. (2012). Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chinese Science Bulletin, 57, 673681. Scholar
Liu, Z., Trentesaux, A., Clemens, S. C., Colin, C., Wang, P., Huang, B., & Boulay, S. (2003). Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 201, 133146. Scholar
Liu, Z., Colin, C., Huang, W., Phon Le, K., Tong, S., Chen, Z., & Trentesaux, A. (2007). Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems, 8, 118. Scholar
Liu, Z., Tuo, S., Colin, C., Liu, J. T., Huang, C. Y., Selvaraj, K., Chen, C., Zhao, Y., Siringan, F., Boulay, S., & Chen, Z. (2008). Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255, 149155. Scholar
Liu, Z., Colin, C., Li, X., Zhao, Y., Tuo, S., Chen, Z., Siringan, F., Liu, J., Huang, C., You, C., & Huang, K. F. (2010). Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology, 277, 4860. Scholar
Liu, G., Xiao, H., Liu, P., Zhang, Q., & Zhang, J. (2016a). Using rare earth elements to monitor sediment sources from a miniature model of a small watershed in the Three Gorges area of China. Catena, 143, 114122. Scholar
Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C. A., Zhang, Y., Li, X., Sompongchaiyakul, P., You, C., Huang, C., Liu, J., Siringan, F., Le, K., Sathiamurthy, E., Hantoro, W., Liu, J., Tuo, S., Zhao, S., Zhou, Z., He, Z., Wang, Y., Bunsomboonsakul, S., & Li, Y. (2016b). Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153, 238273. Scholar
Liu, J., Cao, K., Yin, P., Gao, F., Chen, X., Zhang, Y., & Yu, Y. (2018). The Sources and Transport Patterns of Modern Sediments in Hangzhou Bay: Evidence from Clay Minerals. Journal of Ocean University of China, 17, 13521360. Scholar
Lou, B., & Yin, S. (2016). Spatial and seasonal distribution of phosphorus in the mainstem within the Three Gorges Reservoir before and after impoundment. Water Science and Technology, 73, 636642. ScholarPubMed
Lu, X. X., & Higgitt, D. L. (2001). Sediment delivery to the Three Gorges 2: Local response. Geomorphology, 41, 157169. Scholar
Mao, C., Chen, J., Yuan, X., Yang, Z., Balsam, W., & Ji, J. (2010). Seasonal variation in the mineralogy of the suspended particulate matter of the lower Changjiang river at Nanjing, China. Clays and Clay Minerals, 58, 691706. Scholar
Pang, H., Pan, B., Garzanti, E., Gao, H., Zhao, X., & Chen, D. (2018). Mineralogy and geochemistry of modern Yellow River sediments: Implications for weathering and provenance. Chemical Geology, 488, 7686. Scholar
Rao, W., Tan, H., Chen, J., Ji, J., Chen, Y., Pan, Y., & Zhang, W. (2015). Nd–Sr isotope geochemistry of fine-grained sands in the basin-type deserts, West China: Implications for the source mechanism and atmospheric transport. Geomorphology, 246, 458471. Scholar
Tang, Q., Bao, Y., He, X., Fu, B., Collins, A. L., & Zhang, X. (2016). Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China. Science of the Total Environment, 548–549, 410420. ScholarPubMed
Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Oxford: Blackwell.Google Scholar
Vanderaveroet, P. (2000). Miocene to Pleistocene clay mineral sedimentation on the New Jersey shelf. Oceanologica Acta, 23, 2536. Scholar
Velde, B. (1995). Origin and Mineralogy of Clays. Berlin: Springer 371 pp.CrossRefGoogle Scholar
Vezzoli, G., Garzanti, E., Limonta, M., Andò, S., & Yang, S. (2016). Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology, 261, 177192. Scholar
Wang, Y., Fan, D., Liu, J. T., & Chang, Y. (2016). Clay-mineral compositions of sediments in the Gaoping River-Sea system: Implications for weathering, sedimentary routing and carbon cycling. Chemical Geology, 447, 1126. Scholar
Wang, K., Li, Z. X., Dong, S., Cui, J., Han, B., Zheng, T., & Xu, Y. (2018). Early crustal evolution of the Yangtze Craton, South China: New constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9–2.6 Ga granitic rocks in the Zhongxiang Complex. Precambrian Research, 314, 325352. Scholar
Winkler, A., Wolf-Welling, T., Stattegger, K., & Thiede, J. (2002). Clay mineral sedimentation in high Northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG). International Journal of Earth Sciences, 91, 133148. Scholar
Wu, J., Huang, J., Han, X., Xie, Z., & Gao, X. (2003). Three-Gorge dam-experiment in habitat fragmentation. Science, 300, 12391240.CrossRefGoogle Scholar
Xu, K., Milliman, J. D., & Xu, H. (2010). Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. Global and Planetary Change, 73, 219232. Scholar
Xu, X., Tan, Y., & Yang, G. (2013a). Environmental impact assessments of the Three Gorges Project in China: Issues and interventions. Earth-Science Reviews, 124, 115125. Scholar
Yang, S. L., & Youn, J. S. (2007). Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Marine Geology, 243, 229241. Scholar
Yang, S. L., Zhao, Q. Y., & Belkin, I. M. (2002). Temporal variation in the sediment load of the Yangtze river and the influences of human activities. Journal of Hydrology, 263, 5671. Scholar
Yang, S. Y., Lim, D. I., Jung, H. S., & Oh, B. C. (2004). Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea. Marine Geology, 206, 4153. Scholar
Yang, S. L., Zhang, J., & Xu, X. J. (2007). Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River. Geophysical Research Letters, 34, 15. Scholar
Yang, S., Wang, Z., Guo, Y., Li, C., & Cai, J. (2009). Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication. Journal of Asian Earth Sciences, 35, 5665. Scholar
Yang, S.L., Milliman, J.D., Xu, K. H., Deng, B., Zhang, X.Y., & Luo, X. X. (2014). Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Science Reviews, 138, 469486. Scholar
Zhang, Q., & Lou, Z. (2011). The environmental changes and mitigation actions in the Three Gorges Reservoir region, China. Environmental Science and Policy, 14, 11321138. Scholar
Zhao, Y., Zou, X., Gao, J., Wang, C., Li, Y., Yao, Y., Zhao, W., & Xu, M. (2018). Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea. Journal of Asian Earth Sciences, 152, 91102. Scholar
Zhou, C. H., Zhao, L. Z., Wang, A. Q., Chen, T. H., & He, H. P. (2016). Current fundamental and applied research into clay minerals in China. Applied Clay Science, 119, 37. Scholar
Supplementary material: File

Wang et al. supplementary material
Download undefined(File)
File 91.5 MB