Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-23T00:44:04.908Z Has data issue: false hasContentIssue false

Boron and Lithium Isotopic Signatures of Nanometer-Sized Smectite-Rich Mixed-Layers of Bentonite Beds From Campos Basin (Brazil)

Published online by Cambridge University Press:  01 January 2024

Norbert Clauer*
Affiliation:
Institut des Sciences de la Terre et de l’Environnement de Strasbourg, Université de Strasbourg (UdS/CNRS), 67084 Strasbourg, France
Lynda B. Williams
Affiliation:
School of Earth & Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA
I. Tonguç Uysal
Affiliation:
Department of Geology, Faculty of Engineering, University of Istanbul-Cerrahpasa, Istanbul, Turkey

Abstract

Boron and lithium were analyzed in three nanometer-sized (<20, 20-50 and 50-100 nm) separates of two Santonian (85.8-83.5 Ma) bentonite samples collected closely in the Campos Basin along the southeastern Atlantic coast (Brazil). The B and Li data give various trends that suggest varied crystallization conditions for separates that consist of overwhelming smectite with less than 9% illitic layers. The δ11B of the few illitic tetrahedral sites from one of the samples remains quite constant, while its contents are strictly correlated with those of K, which suggests that illitization proceeded by interaction with pore fluids of the host sediments that supplied the K. In the second sample, the δ11B of the illite layers from the two coarser fractions is indicative of an early volcanic origin, while the smaller size fraction also interacted with sedimentary fluids. Favored by octahedral substitutions of the smectite layers, the δ7Li is more strictly regulated by a volcanic link. In turn, the information of the B and Li isotopic compositions and contents from studied mixed-layers suggests a various origin for the few illite layers of the smectite-rich I-S that contain more B than the smectite layers that host more Li. The difference appears to be sample-site and crystal-size dependent, fueled by pore fluids of the hosting turbidites.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altaner, S. P., Hower, J., Whitney, G., & Aronson, J. L. (1984). Model for K-bentonite formation: Evidence from zoned K-bentonites in the Disturbed Belt, Montana. Geology, 12, 412425.2.0.CO;2>CrossRefGoogle Scholar
Alves, D. B., Mizusaki, A. M. P. & Caddah, L. E. G. (1993) Camadas de cinzasvulcanicas no Santoniano (Creticeo Superior) da Bacia de Campos. Simposio de Geologia do Sudeste, 3, Rio de Janeiro, SBG, Atas, 3742.Google Scholar
Baadsgaard, H., Lerbekmo, J. F., & McDougall, I. (1988). A radiometric age for the Cretaceous-Tertiary boundary based upon K-Ar, Rb-Sr, and U-Pb ages of bentonites from Alberta, Saskatchewan, and Montana. Canadian Journal of Earth Sciences, 25, 88106.CrossRefGoogle Scholar
Burst, J. F. (1959). Post diagenetic clay mineral-environmental relationships in the Gulf Coast Eocene in clays and clay minerals. Clays and Clay Minerals, 6, 327341.CrossRefGoogle Scholar
Caddah, L. F. G., Alves, D. B., & Mizusaki, A. M. P. (1998). Turbidites associated with bentonites in the Upper-Cretaceous of the Campos Basin, offshore Brazil. Sedimentary Geology, 115, 175184.CrossRefGoogle Scholar
Cardoso, R. A. & Hamza, V. M. (2014) Heat flow in the Campos sedimentary basin and thermal history of the continental margin of southeast Brazil. ISRN Geophysics, Hindawi Publication Corporation Article ID 384752, 19 pagesGoogle Scholar
Christidis, G., & Huff, W. (2009). Geological aspects and genesis of bentonites. Elements,5, 93–98. https://doi.org/10.2113/gselements.5.2.93CrossRefGoogle Scholar
Clauer, N., Chaudhuri, S., Kralik, M., & Bonnot-Courtois, C. (1993). Effects of experimental leaching on Rb-Sr and K-Ar isotopic systems and REE contents of diagenetic illite. Chemical Geology, 103, 116.CrossRefGoogle Scholar
Clauer, N., Środoń, J., Francù, J., & Šucha, V. (1997). K-Ar dating of illite fundamental particles separated from illite/smectite. Clay Minerals, 32, 181196.CrossRefGoogle Scholar
Clauer, N., Liewig, N., Pierret, M. C., & Toulkeridis, T. (2003). Crystallization conditions of fundamental particles from mixed-layers illite-smectite of bentonites based on isotopic data (K-Ar, Rb-Sr and δ18O). Clays and Clay Minerals, 51, 664674.CrossRefGoogle Scholar
Clauer, N., O'Neil, J. R., Honnorez, J., & Buatier, M. (2011). 87Sr/86Sr and 18O/16O ratios of clay minerals from a hydro-thermal mound near the Galapagos rift as records of origin, crystallization temperature and fluid composition. Marine Geology, 288, 3242.CrossRefGoogle Scholar
Clauer, N., Honty, M., Fallick, A. E., Šucha, V., & Aubert, A. (2014). Regional illitization in bentonite beds from East Slovak Basin based on isotopic characteristics (K-Ar, δ O and δD) of illite-type nanoparticles. Clay Minerals, 49, 247275.CrossRefGoogle Scholar
Clauer, N., Williams, L., Lemarchand, D., Florian, P., & Honty, M. (2018). Illitization decrypted by B and Li isotope geochemistry of nanometer-sized illite crystals of bentonite beds from East Slovak Basin. Chemical Geology, 477, 177194.CrossRefGoogle Scholar
Clauer, N., Środoń, J., Aubert, A., Uysal, I. T., & Toulkeridis, T. (2020). K-Ar and Rb-Sr dating of nanometer-sized smectiterich mixed-layers from bentonite beds of the Campos Basin (Rio de Janeiro State, Brazil). Clays and Clay Minerals, 68, 446464.CrossRefGoogle Scholar
Clauer, N., Williams, L. B., & Fallick, A. E. (2022). Tracing organic-inorganic interactions by light stable isotopes (H, Li, B, O) of an oil-bearing shale and its clay fraction during hydrous pyrolysis. Clays and Clay Minerals, in press.Google Scholar
Contreras, J. (2011) Seismo-stratigraphy and numerical basin modeling of the southern Brazilian continental margin (Campos, Santos and Pelotas basins). PhD thesis, University Heidelberg, Germany, 146 p.Google Scholar
Elliott, W. C., & Aronson, J. L. (1987). Alleghanian episode of K-bentonites illitization in the southern Appalachian Basin. Geology, 15, 735739.Google Scholar
Essene, E. J., & Peacor, D. R. (1995). Clay mineral thermometry - a critical prospective. Clays and Clay Minerals, 43, 540553.CrossRefGoogle Scholar
Hindshaw, R. S., Tosca, R., Goût, T. L., Tosca, N. J., & Tipper, E. T. (2019). Experimental constraints on Li isotope fractionation during clay formation. Geochimica et Cosmochimica Acta, 250, 219237.CrossRefGoogle Scholar
Hingston, F. J. (1964). Reactions between boron and clays. Australian Journal of Soil Research, 2, 8395.CrossRefGoogle Scholar
Honty, M., Uhlík, P., Šucha, V., Caplovicová, M., Francù, J., Clauer, N., & Biron, A. (2004). Smectite to illite alteration in salt-bearing bentonites (The East Slovak Basin). Clays and Clay Minerals, 52, 533551.CrossRefGoogle Scholar
Hower, J., Eslinger, E. V., Hower, M., & Perry, E. A. (1976). Mechanism of burial metamorphism of argillaceous sediments. 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Huff, W. D. (2008). Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras. Quaternary International, 178, 276287.CrossRefGoogle Scholar
Jackson, M. L. (1975) Soil chemical analysis – advanced course. Madison, Wisconsin 386p.Google Scholar
Jones, C. E., & Jenkyns, H. C. (2001). Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Sciences, 301, 112149.Google Scholar
Köster, M. H., Williams, L. B., Kudejova, O., & Gilg, H. A. (2019). The boron isotope geochemistry of smectites from sodium, magnesium and calcium bentonite deposits. Chemical Geology, 12035.CrossRefGoogle Scholar
Martos-Villa, R., Mata, M. P., Williams, L. B., Nieto, F., Arroyo Rey, X. & Sainz-Diaz, C. I. (2020) Evidence of hydrocarbonrich fluid interaction with clays: Clay mineralogy and boron isotope data from gulf of cádiz mud volcano sediments. Minerals10, 651. https://doi.org/10.3390/min10080651Google Scholar
McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve 0-509 Ma and accompanying lookup table for deriving numerical age. Journal of Geology, 109, 155170.CrossRefGoogle Scholar
Mohriak, W. U., Mello, M. R., Karner, G. D., Dewey, J. F., & Maxwell, J. R. (1990). Structural and stratigraphic evolution of the Campos Basin, offshore Brazil. In Tankard, A. J. & Balkwill, H. R. (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins. American Association of Petroleum Geologists Memoir (Vol. 46, pp. 577598).Google Scholar
Samson, S. D., Patchett, P. J., Roddick, J. C., & Parrish, R. R. (1989). Origin and tectonic setting of Ordovician bentonites in North America: Isotopic and age constraints. Geological Socieyu of America Bulletin, 101, 11751181.2.3.CO;2>CrossRefGoogle Scholar
Środoń, J. & Eberl, D. D. (1984) Illite. In: Bailey S.W. (Ed.), Mineralogical society of america, reviews in mineralogy 13, Washington, DC, 584 p.Google Scholar
Środoń, J., Elsass, F., McHardy, W. J., & Morgan, D. J. (1992). Chemistry of illite/smectite inferred from TEM measurements of fundamental particles. Clay Minerals, 27, 137158.CrossRefGoogle Scholar
Šucha, V., Kraus, I., Gerthofferová, H., Peteš, J., & Sereková, M. (1993). Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals, 28, 243253.CrossRefGoogle Scholar
Teichert, Z., Bose, M., & Williams, L. B. (2020). Lithium isotope compositions of U.S. coals and source rocks: Potential tracer of hydrocarbons. Chemical Geology, 549, 119694.CrossRefGoogle Scholar
Toulkeridis, T., Clauer, N., Chaudhuri, S., & Goldstein, S. L. (1998). Multi-method (K-Ar, Rb-Sr, Sm-Nd) dating of bentonite minerals from eastern United States. Basin Research, 10, 261270.CrossRefGoogle Scholar
Viana, A. R., Faugères, J. C., Kowsmann, R. O., Lima, J. A. M., Caddah, L. F. G., & Rizzo, J. G. (1998). Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sedimentary Geology, 115, 133157.CrossRefGoogle Scholar
Weaver, C. E. (1957). The clay petrology of sediments. Clays and Clay Minerals, 6, 154187.CrossRefGoogle Scholar
Williams, L. B., Clauer, N. & Hervig, R. L. (2012) Light stable isotope microanalysis of clays in sedimentary rocks. In: Sylvester, P. (Ed.) Quantitative mineralogy and microanalysis of sediments and sedimentary rocks. Mineralogical Association of Canada, Short Course 42, 5573.Google Scholar
Williams, L. B., Środoń, J., Huff, W. D., Clauer, N., & Hervig, R. L. (2013). Light element distributions (N, B, Li) in Baltic Basin bentonites record organic sources. Geochimica et Cosmochimica Acta, 120, 582599.CrossRefGoogle Scholar
Williams, L. B., Turner, A., & Hervig, R. L. (2007). Intracrystalline boron isotope partitioning in illite-smectite: Testing the geothermometer. American Mineralogist, 92, 19581965.CrossRefGoogle Scholar
Zhang, L., Chan, L. H., & Gieskes, J. M. (1998). Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochimica et Cosmochimica Acta, 62, 24372450.CrossRefGoogle Scholar