Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-23T06:29:25.481Z Has data issue: false hasContentIssue false

Acid-treated Clay Minerals as Catalysts for Dehydration of Methanol and Ethanol

Published online by Cambridge University Press:  01 January 2024

Monika Marosz
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Andrzej Kowalczyk
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Barbara Gil
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Lucjan Chmielarz*
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
*E-mail address of corresponding author:


The purification of clay minerals prior to their use as catalysts can escalate processing costs so methods are needed whereby less purification is necessary. One such potential method is acid treatment of the unpurified clay minerals. The main objectives of the present study were to develop the optimal acid-treatment conditions and to determine how the acidic properties of the modified clay samples influenced their catalytic capability toward the dehydration of ethanol and methanol. Clay mineral samples – allophane, palygorskite, and sepiolite, without purification – were acid treated (0.8 M HNO3; 95°C; 2, 8, or 24 h) and after calcination (500°C; 6 h) tested as catalysts for the conversion of methanol to dimethyl ether and of ethanol to diethyl ether and ethene. The changes in chemical and structural compositions as well as surface acidity of the mineral samples were analyzed and correlated with their catalytic performance. Among the samples studied, allophane was the most catalytically active in the dehydration of methanol to dimethyl ether. Acid treatment of this mineral sample decreased methanol conversion slightly. An opposite effect was found for ethanol dehydration to diethyl ether, where acid treatment increased catalytic activity of allophane. The differences in catalytic performance of the mineral samples were discussed with respect to the nature and concentration of acid sites.

Original Paper
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abu-Dahrieh, J., Rooney, D., Goguet, A., & Saih, Y. (2012). Activity and deactivation studies for direct dimethyl ether synthesis using, CuO-ZnO-Al2O3 with NH4ZSM-5, HZSM-5 or γ-Al2O3. Chemical Engineering Journal, 203, 201211.CrossRefGoogle Scholar
Alamolhoda, S., Kazemeini, M., Zaherian, A., & Zakerinasab, M. R. (2012). Reaction kinetics determination and neural networks modelling of methanol dehydration over nano γ-Al2O3 catalyst. Journal of Industrial and Engineering Chemistry, 18, 20592068.CrossRefGoogle Scholar
Ayodele, O. B., & Abdullah, A. Z. (2019). Exploring kaolinite as dry methane reforming catalyst support: Influences of chemical activation, organic ligand functionalization and calcination temperature. Applied Catalysis A: General, 576, 2031.CrossRefGoogle Scholar
Bailly, M. L., Chizallet, C., Costentin, G., Krafft, J. M., Lauron-Pernot, H., & Che, M. (2005). A spectroscopy and catalysis study of the nature of active sites of MgO catalysts: Thermodynamic Brønsted basicity versus reactivity of basic sites. Journal of Catalysis, 235, 413422.CrossRefGoogle Scholar
Barthos, R., Szecheney, A., & Solymosi, F. (2006). Decompostion and aromatization of ethanol on ZSM-based catalysts. Journal of Physical Chemistry: B, 110, 2181621825.CrossRefGoogle Scholar
Batchu, R., Galvita, V. V., Alexopoulos, K., Glazneva, T. S., Poelman, H., Reyniers, M.-F., & Marin, G. B. (2019). Ethanol dehydration pathways in H-ZSM-5: Insights from temporal analysis of products. Catalysis Today. Scholar
Boroń, P., Rutkowska, M., Gil, B., Marszałek, B., Chmielarz, L., & Dzwigaj, S. (2019). Experimental evidence of the mechanism of selective catalytic reduction of NO with NH3 over Fe-containing BEA zeolites. ChemSusChem, 12, 692705.CrossRefGoogle ScholarPubMed
Bosch Reig, F., Gimeno Adelantado, J. V., & Moya Moreno, M. C. M. (2002). FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta, 58, 811821.CrossRefGoogle Scholar
Chmielarz, L., Kuśtrowski, P., Zbroja, M., Gil-Knap, B., Datka, J., & Dziembaj, R. (2004). SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co: Part II. Temperature programmed studies. Applied Catalysis B: Environmental, 53, 4761.CrossRefGoogle Scholar
Chmielarz, L., Kuśtrowski, P., Dziembaj, R., Cool, P., & Vansant, E. F. (2010). SBA-15 mesoporous silica modified with metal oxides by MDD method in the role of DeNOx catalysts. Microporous and Mesoporous Materials, 127, 133141.CrossRefGoogle Scholar
Chmielarz, L., Piwowarska, Z., Kuśtrowski, P., Wegrzyn, A., Gil, B., Kowalczyk, A., Dudek, B., Dziembaj, R., & Mchalik, M. (2011). Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process. Applied Clay Science, 53, 164173.CrossRefGoogle Scholar
Chmielarz, L., Wojciechowska, M., Rutkowska, M., Adamski, A., W grzyn, A., Kowalczyk, A., Dudek, B., Boroń, P., Mchalik, M., & Matusiewicz, A. (2012). Acid-activated vermiculites as catalysts of the DeNOx process. Catalysis Today, 191, 2531.CrossRefGoogle Scholar
Chmielarz, L., Kowalczyk, A., Skoczek, M., Rutkowska, M., Gil, B., Natkahski, P., Radko, M., Motak, M., Dębek, R., & Ryczkowski, J. (2018). Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols. Applied Clay Science, 160, 116125.CrossRefGoogle Scholar
Ciftci, A., Varisli, D., Tokay, K. C., Sezgi, N. A., & Dogu, T. (2012). Dimethyl ether, diethyl ether and ethylene from alcohols over tungstophosphoric acid based mesoporous catalysts. Chemical Engineering Journal, 207–208, 8593.CrossRefGoogle Scholar
Colomban, P. (1989). Structure of oxide gels and glasses by infrared and Rarnan scattering. Journal of Materials Science, 24, 30023020.CrossRefGoogle Scholar
Diep, B. T., & Wainwright, M. S. (1987). Thermodynamic equilibrium constants for the methanol-dimethyl ether-water system. Journal of Chemical and Engineering Data, 32, 330333.CrossRefGoogle Scholar
dos Santos Soares, D., Fernandes, C. S., da Costa, A. C. S., Raffi, F. N., Acchar, W., & de Lima e Moura, T. F. A. (2013). Characterization of palygorskite clay from Piauí, Brazil and its potential use as excipient for solid dosage forms containing anti-tuberculosis drugs. Journal of Thermal Analysis and Calorimetry 113, 551558.CrossRefGoogle Scholar
Du, P., Yuan, P., Liu, D., Wang, S., Song, H., & Guo, H. (2018). Calcination-induced changes in structure, morphology, and porosity of allophane. Applied Clay Science, 158, 211218.CrossRefGoogle Scholar
Effenberger, H., Mereiter, K., & Zemann, J. (1981). Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift für Kristallographie – New Crystal Structures, 156, 233243.CrossRefGoogle Scholar
Frost, R. L., Cash, G. A., & Kloprogge, J. T. (1998). ‘Rocky Mountain leather’, sepiolite and attapulgite – an infrared emission spectroscopic study. Vibrational Spectroscopy, 16, 173184.CrossRefGoogle Scholar
Frost, R. L., Kristóf, J., & Horváth, E. (2009). Controlled rate thermal analysis of sepiolite. Journal of Thermal Analysis and Calorimetry, 98, 423428.CrossRefGoogle Scholar
Galarneau, A., Barodawalla, A., & Pinnavaia, T. J. (1995). Porous clay heterostructures formed by gallery-templated synthesis. Nature, 374, 529531.CrossRefGoogle Scholar
Gil, B., Makowski, W., Marszalek, B., Roth, W. J., Kubu, M., Čejka, J., & Olejniczak, Z. (2014). High acidity unilamellar zeolite MCM-56 and its pillared and delaminated derivatives. Journal of the Chemical Society, Dalton Transactions, 43, 1050110511.CrossRefGoogle ScholarPubMed
Ikuta, D., Kawame, N., Banno, S., Hirajima, T., Ito, K., Rakovan, J. F., Downs, R. T., & Tamada, O. (2007). First in situ X-ray identification of coesite and retrograde quartz on a glass thin section of an ultrahigh-pressure metamorphic rock and their crystal structure details. American Mineralogist, 92, 5763.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Abidin, Z., Henmi, T., Matsue, N., Eichinger, L., Kaufhold, A., & Jahn, R. (2010). Allophane compared with other sorbent minerals for the removal of fluoride from water with particular focus on a mineable Ecuadorian allophane. Applied Clay Science, 50, 2533.CrossRefGoogle Scholar
Kitagawa, Y. (1974). Dehydration of allophane and its structural formula. American Mineralogist, 59, 10941098.Google Scholar
Kito-Borsa, T., Pacas, D. A., Selim, S., & Cowley, S. W. (1998). Properties of an ethanol-diethyl ether-water fuel mixture for coldstart assistance of an ethanol-fueled vehicle. Industrial and Engineering Chemistry Research, 37, 33663374.CrossRefGoogle Scholar
Kondo, J. N., Ito, K., Yoda, E., Wakabayashi, F., & Domen, K. (2005). An etoxy intermediate in ethanol dehydation on Bronsted acid sites in zeolite. Journal of Physical Chemistry B, 109, 1096910972.CrossRefGoogle Scholar
Kowalczyk, A., Borcuch, A., Michalik, M., Rutkowska, M., Gil, B., Sojka, Z., Indyka, P., & Chmielarz, L. (2017). MCM-41 modified with transition metals by template ion-exchange method as catalysts for selective catalytic oxidation of ammonia to dinitrogen. Microporous and Mesoporous Materials, 240, 921.CrossRefGoogle Scholar
Li, B., Li, L., Zhang, Q., Weng, W., & Wan, H. (2017). Attapulgite as natural catalyst for glucose isomerization to fructose in water. Catalysis Communications, 99, 2024.CrossRefGoogle Scholar
Liu, L., Chen, H., Shiko, E., Fan, X., Zhou, Y., Zhang, G., Luo, X., & Hu, X. (2018a). Low-cost DETA impregnation of acid-activated sepiolite for CO2 capture. Chemical Engineering Journal, 353, 940948.CrossRefGoogle Scholar
Liu, R., Ji, Z., Wang, J., & Zhang, J. (2018b). Solvothermal synthesized Ag-decorated TiO2/sepiolite composite with enhanced UV-vis and visible light photocatalytic activity. Microporous and Mesoporous Materials, 266, 268275.CrossRefGoogle Scholar
Macina, D., Piwowarska, Z., Tarach, K., Góra-Marek, K., Ryczkowski, J., & Chmielarz, L. (2016). Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol. Materials Research Bulletin, 74, 425435.CrossRefGoogle Scholar
Madejová, J., & Komadel, P. (2001). Baseline studies of the Clay Minerals Society source clays: infrared methods. Clays and Clay Minerals, 49, 410432.CrossRefGoogle Scholar
Madarász, J., Varga, P. P., & Pokol, G. (2007). Evolved gas analyses (TG/DTA–MS and TG–FTIR) on dehydration and pyrolysis of magnesium nitrate hexahydrate in air and nitrogen. Journal of Analytical and Applied Pyrolysis, 79, 475478.CrossRefGoogle Scholar
Marosz, M., Kowalczyk, A., & Chmielarz, L. (2019). Modified vermiculites as effective catalysts for dehydration of methanol and ethanol. Catalysis Today. Scholar
Mironyuk, I., Mandzyuk, V., Sachko, V. M., & Gun'ko, V. (2016). Structural and morphological features of disperse alumina synthesized using aluminum nitrate nonahydrate. Nanoscale Research Letters, 11, 153.CrossRefGoogle Scholar
Mnasri-Ghnimi, S., & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179, 105151.CrossRefGoogle Scholar
Opiso, E., Sato, T., & Yoneda, T. (2009). Adsorption and coprecipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials. Journal of Hazardous Materials, 170, 7986.CrossRefGoogle ScholarPubMed
Papoulis, D., Komarneni, S., Nikolopoulou, A., Tsolis-Katagas, P., Panagiotaras, D., Kacandes, H. G., Zhang, P., Yin, S., Sato, T., & Katsuki, H. (2010). Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity. Applied Clay Science, 50, 118124.CrossRefGoogle Scholar
Pérez, N. A., Bucio, L., Lima, E., Soto, E., & Cedillo, C. (2016). Identification of allophane and other semi-crystalline and amorphous phases on pre-Hispanic Mexican adobe earth bricks from Cholula, Mexico. Microchemical Journal, 126, 349358.CrossRefGoogle Scholar
Perraki, T., & Orfanoudaki, A. (2008). Study of raw and thermally treated sepiolite from the Mantoudi Area, Euboea, Greece. Journal of Thermal Analysis and Calorimetry, 91, 589593.CrossRefGoogle Scholar
Pluth, J. J., Smith, J. V., & Faber, J. (1985). Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature. Journal of Applied Physics, 57, 10451049.CrossRefGoogle Scholar
Rampe, E. B., Kraft, M. D., Sharp, T. G., Golden, D. C., Ming, D. W., & Christensen, P. R. (2012). Allophane detection on Mars with thermal emission spectrometer data and implications for regionalscale chemical weathering processes. Geology, 40, 995998.CrossRefGoogle Scholar
Rastsvetaeva, R. K., Chukanov, N. V., & Zadov, A. E. (2009). Refined structure of afwillite from the northern Baikal region. Crystallography Reports, 54, 418422.CrossRefGoogle Scholar
Rodriguez-Blanco, J. D., Shaw, S., & Benning, L. G. (2011). The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale, 3, 265271.CrossRefGoogle ScholarPubMed
Rownaghi, A. A., Rezaei, F., Stante, M., & Hedlund, J. (2012). Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Applied Catalysis B: Environmental, 119–120, 5661.CrossRefGoogle Scholar
Sing, K. S. W., & Williams, R. T. (2004). The use of molecular probes for the characterization of nanoporous adsorbents. Particle and Particle Systems Characterization, 21, 7179.CrossRefGoogle Scholar
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systens with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603619.CrossRefGoogle Scholar
Srinivasan, P. D., Khivantsev, K., Tengco, J. M. M., Zhu, H., & Bravo-Suárez, J. J. (2019). Enhanced ethanol dehydration on γ-Al2O3 supported cobalt catalyst. Journal of Catalysis, 373, 276296.CrossRefGoogle Scholar
Stiefel, M., Ahmad, R., Arnold, U., & Döring, M. (2011). Direct synthesis of dimethyl ether from carbon-monoxide-rich synthesis gas: Influence of dehydration catalysts and operating conditions. Fuel Processing Technology, 92, 14661474.CrossRefGoogle Scholar
Takahara, A., Saito, M., Inaba, M., & Murata, K. (2015). Dehydration of ethanol into ethylene over solid acid catalysts. Catalysis Letters, 105, 249252.CrossRefGoogle Scholar
Thill, A. (2016). Characterisation of imogolite by microscopic and spectroscopic methods. Pp. 223253 in: Nanosized Tubular Clay Minerals Halloysite and Imogolite (Yuan, P., Thill, A., & Bergaya, F., editors). Developments in Clay Science, Vol. 7. Elsevier, Amsterdam.Google Scholar
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 10511069.CrossRefGoogle Scholar
Tian, Y., Yang, J., Yang, C., Lin, F., Hu, G., Kong, M., & Liu, Q. (2019). Comparative study of the poisoning effect of NaCl and Na2O on selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalyst. Journal of the Energy Institute, 92, 10451052.CrossRefGoogle Scholar
Tokay, K. C., Dogu, T., & Dogu, G. (2012). Methanol dehydration reaction to produce clean diesel alternative dimethyl ether over mesoporous aluminosilicate-based catalysts. Chemical Engineering Journal, 184, 278285.CrossRefGoogle Scholar
Ue, M., Mizutani, F., Takeuchi, S., & Sato, M. (1997). Characterization of anodic films on aluminum formed in carboxylate-based nonaqueous electrolyte solutions. Journal of the Electrochemical Society, 144, 37433748.CrossRefGoogle Scholar
Varisli, D., Dogu, T., & Dogu, G. (2007). Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropoly acid catalysts. Chemical Engineering Science, 62, 53495352.CrossRefGoogle Scholar
Vicente-Rodriguez, M. A., Suarez, M., Bafiares-Mufioz, M. A., & Lopez-Gonzalez, J. D. (1996). Comparative FT-IR study of the removal and structural modifications during acid silicates. Spectrochimica Acta A, 52, 16851694.CrossRefGoogle Scholar
Vinoda, B. M., Vinuth, M., Bodke, Y. D., & Manjanna, J. (2015). Photocatalytic degradation of toxic methyl red dye using silica nanoparticles synthesized from rice husk ash. Journal of Environmental and Analytical Toxicology, 05, 336.Google Scholar
Xu, L., Penga, T., Tiana, J., Lua, Z., Hu, Y., & Sun, W. (2017). Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation. Applied Surface Science, 426, 10051022.CrossRefGoogle Scholar
Yaripour, F., Baghaei, F., Schmidt, I., & Perregaard, J. (2005). Catalytic dehydration of methanol to dimethyl ether (DME). over solid-acid catalysts. Catalysis Communications, 6, 147152.CrossRefGoogle Scholar
Zheng, J., Zeng, Q., Yia, Y., Wang, Y., Ma, J., Qin, B., Zhang, X., Sun, W., & Li, L. (2011). The hierarchical effects of zeolite composites in catalysis. Catalysis Today, 168, 124132.CrossRefGoogle Scholar