Skip to main content Accessibility help
×
Home

XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed-layer kaolinite/smectite

  • B. Delvaux (a1), M. M. Mestdagh (a1), L. Vielvoye (a2) and A. J. Herbillon (a3)

Abstract

The formation of kaolinite from Al hydroxy interlayered Garfield nontronite has been carried out at 225°C in hydrothermal conditions. The kaolinitization process, which proceeds through mixed-layer kaolinite/smectite intermediates, was followed by XRD, IR and ESR spectroscopy, chemical analysis and charge properties. The smectite content of the clay products decreases regularly with the duration of the hydrothermal treatment. The CEC and the structural Fe content of the deferrated products show a similar trend. IR features specific to nontronite disappear and are barely detectable as the smectite content of the mixed-layer clay falls below 30%. In contrast, the ESR spectrum of nontronite is characterized by a broad g2 signal that remains even after prolonged hydrothermal treatment. The calibration of the g2 ESR signal, due to Fe-smectite, shows that the synthetic kaolinites have low Fe contents (∼ 1% Fe2O3) indicating that the kaolinitization process involves destruction of the 2:1 layers and the subsequent neoformation of kaolinite and Fe oxides. As illustrated by the study of deferrated soil clay samples, representing a weathering sequence Fe-smectite → kaolinite + Fe oxides, ESR spectroscopy proved to be a powerful Fe probe for detecting Fe-rich smectite in kaolinite/Fe-smectite mixed-layer clays.

Copyright

References

Hide All
Angel, B.R., Jones, J.P.E. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites I. Clay Miner., 10, 247–255.
Angel, B.R., Richard K. & Jones, J.P.E. (1975) The synthesis, morphology, and general properties of kaolinites specifically doped with metallic ions, and defects generated by irradiation. Proc. Int. Clay Conf. Mexico City,, 297304.
Barnhisel, R.I. & Rich, C.I. (1963) Gibbsite formation from aluminum-interlayers in montmorillonite. Soil Sci. Soc. Am. Proc., 27, 632–635.
Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Miner., 18, 177–186.
Brindley, G.W., Kao, C.C., Harrison, J.L., Lipsicas M. & Raythatha R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner., 34, 239–249.
Brydon, J.E. & Kodama H. (1966) The nature of aluminum hydroxide-montmorillonite complexes. Am. Miner., 51, 875–889.
Cradwick, P.D. & Wilson, M.J. (1972) Calculated X-ray diffraction profiles for interstratified kaolinite- montmorillonite. Clay Miner., 9, 395–405.
Craig, D.C. & Loughnan, F.C. (1964) Chemical and mineralogical transformations accompanying the weathering of basic volcanic rocks from New South Wales. Aust. J. Soil Res., 2, 218–234.
De Endredy, A.S. (1963) Estimation of free iron oxides in soils and clays by a photolytic method. Clay Miner. Bull, 5, 209–217.
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London.
Goodman, B.A., Nadeau, P.H. & Chadwick J. (1988) Evidence for the multiphase nature of bentonites from Mossbauer and EPR spectroscopy. Clay Miner., 23, 147–159.
Goodman, B.A., Russell, J.D. & Fraser, A.R. (1976) A Mossbauer and I.R. spectroscopic study of the structure of nontronite. Clays Clay Miner., 24, 53–59.
Herbillon, A.J., Frankart R. & Vielvoye L. (1981) An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence. Clay Miner., 16, 195–201.
Herbillon, A.J., Mestdagh, M.M., Vielvoye L. & Derouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner., 11, 201–220.
Jones, J.P.E., Angel, B.R. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites II. Clay Miner., 10, 257–269.
Mackenzie, R.C. (1952) A micromethod for determination of cation exchange capacity of clays. Clay Miner. Bull, 1, 203–205.
Meads, R.E. & Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner., 10, 313–345.
Mehra, O.P. & Jackson, M.L. (1960) Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327.
Mendelovici, E., Yariv, Sh. & Villalba, R. (1979) Iron-bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence. Clay Miner., 14, 323–331.
Mestdagh, M.M., Vielvoye L. & Herbillon, A.J. (1980) Iron in kaolinites: II. The relationship between kaolinite cristallinity and iron content. Clay Miner., 15, 1–13.
Millot, G. (1964) Geologie des Argiles. Masson & Cie, Paris.
Muller, J.P., & Bocquier, G. (1987) Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon. Proc. Int. Clay Conf. Denver, 186194.
Norrish, K. & Pickering, J.G. (1983) Clay minerals. Pp. 281308 in: Soils: an Australian Viewpoint. Melbourne Academic Press, London.
Oberlin, A. & Couty R. (1970) Conditions of kaolinite formation during alteration of some silicates by water at 200°C. Clays Clay Miner., 18, 347456.
Olivier, D., Vedrinh, J.C. & Pezerat, H. (1975) Application de la resonance paramagnetique electronique a la localisation du Fe3+ dans les smectites. Bull. Gr. frang. Argiles XXVII, 153165.
Petit, S., Decarreau, A., Eymery, J.P. & Thomassin, J.H. (1988) Synthese de kaolinites ferriques a 200°C. Comparaison avec les kaolinites d'altération supergène: teneur en fer, morphologie, cristallinité. C.R. Acad. Sc. Paris, T 307, série II, 19611966
Poncelet, G.M. & Brindley, G.W. (1967) Experimental formation of kaolinite from montmorillonite at low temperature. Am. Miner., 52, 1161–1173.
Quantin, P., Herbillon, A.J., Janot, C. & Sieffermann, G. (1984) L"halloysite" blanche riche en fer de Vate (Vanuatu). Hypothese d'un edifice interstratifie halloysite-hisingerite. Clay Miner., 19, 629–643.
Rodrique, L., Poncelet, G. & Herbillon, A.J. (1972) Importance of the silica subtraction process during the hydrothermal kaolinitization of amorphous silico-aluminas. Proc. Int. Clay Conf. Madrid,, 187197.
Rousseaux, J.M. (1978) Quantitative estimation of kaolinite in sediments by differential infrared spectroscopy. Clays Clay Miner., 26, 202–208.
Schultz, L.G., Shepard, A.O., Blackmon, P.D. & Starkey, H.C. (1971) Mixed-layer kaolinite- montmorillonite from the Yucatan peninsula, Mexico. Clays Clay Miner., 19, 137–150.
Serratosa, J.M. (1960) Dehydration studies by i.r. spectroscopy. Am. Miner., 45, 1101–1104.
Srodon, J. (1980a) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays Clay Miner., 28, 401–411.
Sroedon, J. (1980b) Synthesis of mixed-layer kaolinite/smectite. Clays Clay Miner., 6, 419–424.
Suquet, H., Malard, C. & Pezerat, H. (1987) Structure et proprietes d'hydratation des nontronites. Clay Miner., 22, 157–167.
Voinovitch, I.A., Debras-Guedon, J. & Louvrier, J. (1962) VAnalyse des Silicates, p. 160. Hermann, Paris.
Weismiller, R.A., Ahlrichs, J.L. & White, J.L. (1967) Infrared studies of hydroxy-aluminum interlayer material. Soil Sci. Soc. Am. Proc., 31, 459–463.
Wilson, M.J. (1987) Soil smectites and related interstratified minerals: recent developments. Proc. Int. Clay Conf. Denver,, 167173.
Yerima, B.P.K., Calhoun, F.G., Senkayi, A.L. & Dixon, J.B. (1985) Occurrence of interstratified kaolinite- smectite in El-Salvador vertisols. Soil Sci. Soc. Am. J., 49, 462–466.

Related content

Powered by UNSILO

XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed-layer kaolinite/smectite

  • B. Delvaux (a1), M. M. Mestdagh (a1), L. Vielvoye (a2) and A. J. Herbillon (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.