Skip to main content Accessibility help

X-ray photoelectron spectroscopic analysis of halloysites with different composition and particle morphology

  • M. Soma (a1), G. J. Churchman (a2) and B. K. G. Theng (a3)


The surface composition of some halloysites with different particle morphology has been investigated by X-ray photoelectron spectroscopy (XPS) before and after removal of external Fe. The Fe(III) 2p 3/2 binding energy of external Fe is appreciably smaller than that of structural Fe. Particle morphology is influenced by structural Fe content. The long-tubular halloysite has very little surface Fe, and its concentration tends to increase with the proportion of non-tubular particles in the samples. The spheroidal sample contains the most structural Fe which, however, does not appear to influence particle shape directly. Study by XPS indicates that Fe substitutes for Al in octahedral positions in approximately 1 : 2 proportion. As a result, an increase in octahedral vacancies and cation exchange capacity would be predicted. Further, halloysite layers within a crystal are generally inhomogeneous in composition. Built up like “onion skins”, the surface layers would either be enriched or depleted in Fe depending on the chemical environment in which crystal growth occurs.



Hide All
Askenasy, P.E., Dixon, J.B. & McKee, T.R. (1973) Spheroidal halloysite in a Guatemalan soil. Soil Sci. Soc. Am. Proc., 37, 799–803.
Bailey, S.W. (1990) Halloysite—a critical assessment. Proc. 9th Int. Clay Conf., Strasbourg, 89–;98.
Bates, T.F., Hildebrand, F.A. & Swineford, A. (1950) Morphology and structure of endellite and halloysite. Am. Miner., 35, 463–;484.
Carson, C.D. & Kunze, G.W. (1970) New occurrences of tabular halloysite. Soil Sci. Soc. Am. Proc., 34, 538–540.
Churchman, G.J. & Theng, B.K.G. (1984) Interactions of halloysites with amides: morphological factors affecting complex formation. Clay Miner., 19, 161–175.
Dixon, J.B. & McKee, T.R. (1974) Internal and external morphology of tubular and spheroidal halloysite particles. Clays Clay Miner., 22, 127–137.
Evans, S. & Raftery, E. (1982) Determination of the oxidation state of manganese in lepidolite by X-ray photoelectron spectroscopy. Clay Miner., 17, 477–481.
Johnson, S.L., Guggenheim, S. & Roster van Groos, A.F. (1990) Thermal stability of halloysite by high-pressure differential thermal analysis. Clays Clay Miner, 38, 477–484.
Kirkman, J.H. (1977) Possible structure of halloysite disks and cylinders observed in some New Zealand rhyolitic tephras. Clay Miner 12, 199–;216.
Kohyama, N., Fukushima, K. & Fukami, A. (1982) Interlayer hydrates and complexes of day minerals observed by electron mciroscopy using an environmental cell. Proc. Int. Clay Conf. Bologna-Pavia,, 373–;384.
Kunze, G.W. & Bradley, W.F. (1964) Occurrence of a tabular halloysite in a Texas soil. Clays Clay Miner.12, 523–;527.
Mehra, O.P. & Jackson, M. L.(1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327.
Noko, H. (1986) Hexagonal platy halloysite in an altered tuff bed, Komaki City, Aichi Prefecture, central Japan. Clay Miner. 21, 401–;415.
Parfht, R.L., Saigusa, M. & Cowie J,D. (1984) Allophane and halloysite formation in a volcanic ash bed under different moisture conditions. Soil Sci. 138, 360–;364.
Radoslovjch, E.W. (1963) The cell dimensions and symmetry of Jayer-Iattice silicates. VI. Serpentine and kaolin morphology. Am. Miner. 48, 368–;378.
Seyama, H. & Soma, M. (1984) X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations. J. Chem. Soc., Faraday Trans. 1,, 80, 237–248.
Seyama, H. & Soma, M. (1985) Bonding-state characterization of the constituent elements of silicate minerals by X-ray photoelectron spectroscopy. J. Chem. Soc., Faraday Trans. 1, 81, 485–;495.
Seyama, H. & Soma, M. (1987) Fe 2p spectra of silicate minerals. J. Electron Spectrosc. Relat. Phenom. 42, 97–;101.
Soma, M., Tanaka, A., Seyama, H., Hayasi, S. & Hayamizu, K. (1990) Bonding states of sodium in tetrasilicic sodium fluor mica. Clay Sci., 8, 1–8.
Stucki, J.W., Roth, C.B. & Baitinger, W.E. (1976) Analysis of iron-bearing day minerals by electron spectroscopy for chemical analysis (ESCA). Clays Clay Miner., 24, 289–292.
Tazaki, K. (1979) Micromorphology of halloysite produced by weathering of plagioclase in volcanic ash. Proc. Int. Clay Conf. Oxford,, 415–;422.
Tazaki, K. (1982) Analytical electron microscopic studies of halloysite formation processes—morphology and composition of halloysite. Proc. Int. Clay Conf. Bologna-Pavia,, 573–;584.
Theng, B.K.G., Russell, M., Churchman, G J. & Parfitt, R.L. (1982) Surface properties of allophane, halloysite, and imogolite. Clays Clay Miner., 30, 143–149.
Wada, K. (1980) Mineralogical characteristics of Andisols. Pp. 87-107 in: Soils with Variable Charge(Theng, B.K.G., editor). NZ Soc. Soil Sci. Lower Hutt.
Whitton, J.S. & Churchman, G.J. (1987) Standard methods for mineral analysis of soil survey samples for characterisation and classification in NZ Soil Bureau. NZ Soil Bureau Scientific Report, 79, 8–10.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed