Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T07:00:21.665Z Has data issue: false hasContentIssue false

Two-stage formation of kaolinite in shear-zone slates, southern Iberian Massif, SE Spain

Published online by Cambridge University Press:  09 July 2018

J. Jiménez-Millán*
Affiliation:
Departamento de Geología, Universidad de Jaén, Campus Universitario, Edificio B-3, 23071 Jaén, Spain
N. Velilla
Affiliation:
Departamento de Mineralogía y Petrología, Universidad de Granada, Facultad de Ciencias, Avda. Fuentenueva s/n, 18002 Granada, Spain
M. Vázquez
Affiliation:
Departamento de Geociencias, Universidade de Aveiro, Campus Universitario, Aveiro, 3810-193, Portugal
*

Abstract

Kaolinite aggregates are the major alteration product in the strongly deformed areas of a shear zone developed in contact-metamorphosed slates from the Southern Iberian Massif near Jaén (SE Spain). Muscovite and Fe-rich chlorite in strain shadows of broken andalusite crystals were observed in slates from less deformed areas. The presence of phyllosilicate packets nearly perpendicular to each other and veinlets parallel to {110} of andalusite reveal the importance of cleavage-controlled fracturing of andalusite to the mineral reactions. The compositional similarity between kaolinite and andalusite suggests a direct transformation of andalusite to kaolinite in the strongly altered area. The absence of clear preferred orientation of phyllosilicates relative to andalusite, and the compositional differences of andalusite with muscovite and chlorite from the less altered samples, indicate andalusite dissolution and chlorite-muscovite precipitation during a first mineral-growth stage. Muscovite-kaolinite and chlorite-kaolinite intergrowths indicate a later retrograde replacement stage.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Buseck, P.R. (1998) Transmission electron microscopy of muscovite alteration of tourmaline. American Mineralogist, 83, 535541.CrossRefGoogle Scholar
Bruhn, R.L., Parry, W.T., Yonkee, W.A. & Thompson, T. (1994) Fracturing and hydrothermal alteration in normal fault zones. Pure & Applied Geophysics, 142, 609644.CrossRefGoogle Scholar
Burt, D.M. & Stump, E. (1984) Mineralogical investigation of andalusite-rich pegmatites from Szabo Bluff, Scott Glacier area, Antarctica. Antarctic Journal of the United States, Annual Review, 4952.Google Scholar
Caine, J.S., Evans, J.P. & Forster, C.B. (1996) Fault zone architecture and permeability structure. Geology, 24, 10251028.2.3.CO;2>CrossRefGoogle Scholar
Canals, A. & Cardellach, E. (1997) Ore lead and sulphur isotope pattern from the low-temperature veins of the Catalonian Coastal Ranges (NE Spain). Mineralium Deposita, 32, 243249 Google Scholar
Chinner, G.|A. (1973) The selective replacement of the aluminium silicates by white mica: a comment. Contributions to Mineralogy and Petrology, 41, 8387.CrossRefGoogle Scholar
Guidotti, C.V. (1984) Micas in metamorphic rocks. Pp. 357368 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Guidotti, C.V. & Johnson, S.E. (2002) Pseudomorphs and associated microstructures of western Maine, USA. Journal of Structural Geology, 24, 11391156.Google Scholar
Hanson, R.B. (1995) The hydrodynamics of contact metamorphism. Geological Society of America Bulletin, 107, 595611.Google Scholar
Johnson, S.E. & Vernon, R.H. (1995) Stepping stones and pitfalls in the determination of an anticlockwise P—T—t-deformation path: the low-P, high-T Cooma Complex, Australia. Journal of Metamorphic Geology, 13, 165183.CrossRefGoogle Scholar
Juliani, C., Rye, R.O., Nunes, C.M.D., Snee, L.W., Silva, R.H.C., Monteiro, L.V.S., Bettencourt, J.S., Neumann, R. & Neto, A.A. (2005) Paleoproterozoic high-sulfidation mineralization in the Tapajos gold province, Amazonian Craton, Brazil: geology, mineralogy, alunite argon age, and stable-isotope constraints. Chemical Geology, 215, 95125.Google Scholar
Kerrich, R. (1986) Fluid infiltration into fault zones: chemical, isotopic and mechanical effects. Pure & Applied Geophysics, 124, 225268.Google Scholar
Kwak, T.A.P. (1971) The selective replacement of the aluminium silicates by white mica. Contributions to Mineralogy and Petrology, 32, 193210.Google Scholar
Larrea, F.J., Carracedo, M., Ortega Cuesta, L.A. & Gil-Ibarguchi, J.L. (1995) The Santa Elena stock (Jaén). An intrusion genetically independent from the magmatic association of the Los Pedroches Batolith. Cadernos do Laboratorio xeolóxico de Laxe, 20, 151166.Google Scholar
Lillo, J. (1992) Vein-type base-metal ores in Linares-La Carolina (Spain) - Ore-lead isotopic constrains. European Journal of Mineralogy, 4, 337343.CrossRefGoogle Scholar
Lintern, B.C. & Floyd, J.D. (1997) The Kirkcudbright- Dalbeattie district - a concise account of the geology. Memoir of the British Geological Survey, Sheets 5W, 5E and part of 6W (Scotland). Google Scholar
Martínez, F.J., Reche, J. & Arboleya, M.L. (2001) P—T modelling of the andalusite-kyanite-andalusite sequence and related assemblages in high-Al graphitic pelites. Prograde and retrograde paths in a late kyanite belt in the Variscan Iberia. Journal of Metamorphic Geology, 19, 661677.Google Scholar
Martínez, F.J., Reche, J., Arboleya, M.L. & Julivert, M. (2004) Retrograde replacement of andalusite by Ca—Na mica in chloritoid-bearing metapelites. PTX modelling of rocks with different Al content in the MnNCKFMASH system. Journal of Metamorphic Geology, 22, 777792.CrossRefGoogle Scholar
Martínez-Poyatos, D., Nieto, F., Azor, A. & Simancas, J.F. (2001) Relationships between very low-grade metamorphism and tectonic deformation: examples from the southern Central Iberian Zone (Iberian Massif, Variscan Belt). Journal of the Geological Society, 158, 953968.CrossRefGoogle Scholar
Merriman, R.J. & Frey, M. (1999) Patterns of very low-grade metamorphism in metapelitic rocks. Pp. 61107 in: Low-Grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Sciences Ltd., Oxford, UK.Google Scholar
Murphy, W.M. & Helgeson, H.C. (1989) Thermodynamic and kinetic constraints on reaction-rates among minerals and aqueous-solutions. 4. Retrieval of rate constants and activation parameters for the hydrolysis of pyroxene, wollastonite, olivine, andalusite, quartz, and nepheline. American Journal of Science, 289, 17101.CrossRefGoogle Scholar
Parry, W.T. (1998) Fault-fluid compositions from fluidinclusion observations and solubilities of fracture-sealing minerals. Tectonophysics, 290, 126.CrossRefGoogle Scholar
Riesco, M., Stüwe, K. & Reche, J. (2005) Formation of corundum in metapelites around ultramafic bodies. An example from the Saualpe region, Eastern Alps. Mineralogy and Petrology, 83, 125.Google Scholar
Robertson, I.D. & Eggleton, R.A. (1991) Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite. Clays and Clay Minerals, 39, 113126.CrossRefGoogle Scholar
Simancas, J.F., Poyatos, D.M., Exposito, I., Azor, A. & Lodeiro, F.G. (2001) The structure of a major suture zone in the SW Iberian Massif: the Ossa-Morena/ Central Iberian contact. Tectonophysics, 332, 295308.Google Scholar
Slack, J.F. & Robinson, G.R. Jr. (1990) Retrograde metamorphic breakdown of tourmaline at Broken Hill, Australia. Geological Society of America, Abstract with Programs, 22, A126.Google Scholar