Skip to main content Accessibility help

Synthesis and characterization of montmorillonite-type phyllosilicates in a fluoride medium

  • M. Reinholdt (a1), J. Miehé-Brendlé (a1), L. Delmotte (a1), R. Le Dred (a1) and M.-H. Tuilier (a2)...


The fluorine route is thoroughly investigated for the hydrothermal synthesis of montmorillonite in the Na2O-MgO-Al2O3-SiO2-H2O system. Using the optimal conditions suggested by Reinholdt et al. (2001) for the crystallization of pure montmorillonites with the formula Na2x(Al2(1-x)Mg2x☐)Si4O10(OH)2, several parameters (x, Mg content, duration of crystallization, F/Si atomic ratio, pH, nature of counterbalance cation) are varied independently from their ideal values. The products are analysed by various techniques (X-ray diffraction, thermogravimetric analysis-differential thermal analysis, 29Si, 27Al and 19F magic angle spinning-nuclear magnetic resonance). It appears that a pure montmorillonite can only be obtained within a narrow x range (0.10 ≤ x ≤ 0.20). The presence of F in the starting hydrogel and the crystallization time also have significant effects on the purity of the final products. It is shown that a small amount of fluorine is needed for the crystallization of pure montmorillonite phyllosilicates.


Corresponding author



Hide All
Alba, M.D., Alvero, R., Becerro, A.I., Castro, M.A. & Trillo, J.M. (1998) Chemical behavior of lithium ions in reexpanded Li-montmorillonites. Journal of Physical Chemistry B, 102, 22072213.
Caillere, S., Hénin, S. & Rautureau, M. (1982a) Minéralogie des argiles. Tome 1: Structure et Proprietes Physico-chimiques. Masson, France, pp. 14-37.
Caillère, S., Hénin, S. & Rautureau, M. (1982b) Mineralogie des argiles, Tome 2: Classification et Nomenclature. Masson, France, pp. 19–27, 79–85.
Cuadros, J., Delgado, A., Cardenete, A., Reyes, E. & Linares, J. (1994) Kaolinite/montmorillonite resembles beidellite. Clays and Clay Minerals, 42, 643651.
Drachman, S.R., Roch, G.E. & Smith, M.E. (1997) Solid state NMR characterization of the thermal transformation of Fuller's Earth. Solid State Nuclear Magnetic Resonance, 9, 257–267.
Engelhardt, G. & Michel, D. (1987) High Resolution Solid-state NMR of Silicates and Zeolites. John Wiley & Sons, New York, USA.
Frost, R.L., Ruan, H., Kloprogge, J.T. & Gates, W.P. (2000) Dehydration and dehydroxylation of nontronites and ferruginous smectite. Thermochimica Ada, 346, 6372.
Garcia-Rodriguez, A., Del Rey-Bueno, F., Del Rey- Perez-Caballero, F.J., Urena-Amate, M.D. & Mata-Arjona, A. (1995) Synthesis and characterization of montmorillonite-(Ce or Zr) phosphate crosslinked compounds. Material Chemistry Physics, 39, 269277.
Gates, W.P., Stucki, J.W. & Kirkpatrick, R.J. (1996) Structural properties of reduced Upton montmorillonite. Physics and Chemistry of Minerals, 23, 535541.
Gates, W.P., Komadel, P., Madejová, J., Bujdak, J., Stucki, J.W. & Kirkpatrick, R.J. (2000) Electronic and structural properties of reduced-charge montmorillonites. Applied Clay Sciences, 16, 257271.
Goodyear, J. & Duffin, W.J. (1961) An X-ray examination of an exceptionally well crystallized kaolinite. Mineralogical Magazine, 32, 902907.
Harder, H. (1972) The role of magnesium in the formation of smectite minerals. Chemical Geology, 10, 3139.
Harward, M.E. & Brindley, G.W. (1965) Swelling properties of synthetic smectites in relation to lattice substitutions. Clays and Clay Minerals, 13, 209222.
Janes, N. & Oldfield, E. (1985) Prediction of Silicon-29 Nuclear Magnetic Resonance chemical shifts using a group electronegativity approach: applications to silicate and aluminosilicate structures. Journal of the American Chemical Society, 107, 67696775.
Karšulin, M. & Stubičan, V.I. (1954) The structure and properties of synthetic montmorillonite I. The exchange capacity and thermal behavior of synthetic magnesium and sodium montmorillonite. Monatshefte für Chemie, 85, 343358.
Kloprogge, J.T., Komarneni, S. & Amonette, J.E. (1999) Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47, 529554.
Labouriau, A., Kim, Y.-W., Chipera, S., Bish, D.L. & Earl, W.L. (1995) A 19F nuclear magnetic resonance study of natural clays. Clays and Clay Minerals, 43, 697704.
Levinson, A.A. & Vian, R.W. (1966) The hydrothermal synthesis of montmorillonite group minerals from kaolinite, quartz and various carbonates. American Mineralogist, 51, 495498.
Marcuccilli-Hoffner, F. (1992) Etude des milieux de synthèse fluorés de zéolithes et d'aluminophosphates microporeux. PhD thesis, Universite de Haute-Alsace, Mulhouse, France.
Massiot, D., Favon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z. & Hoatson, G. (2002) Modelling one and two-dimensional solid state NMR spectra. Magnetic Resonance Chemistry, 40, 7076.
Mazzi, F. & Galli, E. (1978) Is each analcime different? American Mineralogist, 63, 448–460.
Nagase, T., Iwasaki, T., Ebina, T., Hayashi, H., Onodera, Y. & Chandra Dutta, N. (1999) Hydrothermal synthesis of Fe-montmorillonite in Si-Fe-Mg system. Chemistry Letters, 4, 303304.
Nakazawa, H., Yamada, H., Yoshioka, K., Adachi, M. & Fujita, T. (1991) Montmorillonite crystallization from glass. Clay Science, 8, 5968.
Otsubo, Y. & Kato, C. (1954) Hydrothermal synthesis of montmorillonite-type silicates III. Journal of the Chemical Society of Japan, 75, 456459.
Reinholdt, M. (2001) Synthèse en milieu fluoré et caracterisation de phyllosilicates de type montmorillonite. Etude structurale par spectroscopies d'Absorption des Rayons X et de Resonance Magnétique Nucléaire. PhD thesis, Universite de Haute Alsace, Mulhouse, France.
Reinholdt, M., Miehé-Brendlé, J., Delmotte, L., Tuilier, M.-H., Le Dred, R., Cortès, R. & Flank, A.-M. (2001) Fluorine route synthesis of montmorillonites containing Mg or Zn and characterization by XRD, thermal analysis, MAS-NMR and EXAFS spectroscopy. European Journal of Inoganic Chemistry, 11, 28312841.
Santaren, J., Sanz, J. & Ruiz-Hitzky, E. (1990) Structural fluorine in sepiolite. Clays and Clay Minerals, 38, 6338.
Sanz, J. & Robert, J.-L. (1992) Influence of structural factors on 29Si and 27Al NMR chemical shifts of phyllosilicates 2:1. Physics and Chemistry of Minerals, 19, 3945.
Sanz, J. & Serratosa, J.M. (1984) 29Si and 27Al highresolution MAS-NMR spectra of phyllosilicates. Journal of the American Chemical Society, 106, 47904793.
Stubičan, V. (1959) Clay mineral research at the institute for silicate chemistry, Zagreb. Clays and Clay Minerals, 7, 295302.
Watanabe, T. & Sato, T. (1988) Expansion characteristics of montmorillonite and saponite under various relative humidity conditions. Clay Science, 7, 129–138.
Weiss, C.A. Jr, Altaner, S.P. & Kirkpatrick, R.J. (1987) High spectroscopy of 2:1 layer silicates: correlations among chemical shift, structural distortions and chemical variations. American Mineralogist, 74, 203215.
Yamada, H., Nakazawa, H., Hashizume, H., Shimomura, S. & Watanabe, T. (1994) Hydration behavior of Nasmectite crystals synthesized at high pressure and high temperature. Clays and Clay Minerals, 42, 7780.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed