Skip to main content Accessibility help
×
Home

Smectite formation in rhyolitic obsidian as inferred by microscopic (SEM-TEM-AEM) investigation

  • S. Fiore (a1), F. J. Huertas (a2), F. Huertas (a2) and J. Linares (a2)

Abstract

Experimental alteration of a rhyolitic obsidian by solutions containing variable concentrations of Mg was carried out at 100, 150 and 200°C, for 30, 60 and 90 days, to investigate the mechanism of smectite formation. The smectite exhibits two distinct morphologies: (1) small flakes (aggregates of a few crystals); and (2) large flakes (massive groups). The small flakes are the earlier alteration products. Both morphological types have distinct chemical compositions: the smallest laminae are dioctahedral and contain more Fe, whereas the particles from the rose-shaped aggregates contain Mg and are trioctahedral. Intermediate compositions have been observed between the extreme compositions.

It is suggested that the two morphologies are the result of two distinct genetic processes: (1) the small flakes (Fe-rich smectite) form by solid state rearrangements of the hydrated external layer of glass and/or via the formation of domains within the glass; (2) the rose-shaped aggregates (Mg-rich smectite) form by precipitation from solution.

Copyright

Corresponding author

References

Hide All
Banfield, J.F. & Barker, W.W. (1998) Low-temperature alteration in tuffs from Yucca Mountain, Nevada. Clays Clay Miner. 46, 2737.
Banfield, J.F., Jones, B.F. & Veblen, D.R. (1991) An AEM-TEM study of weathering and diagenesis, Albert Lake, Oregon: I. Weathering reactions in the volcan ics. Geoc him. Cosmochim. Acta, 55, 27912793.
Caballero, E., Reyes, E., Huertas, F., Linares, J. & Pozzuoli, A. (1991) Early-stage smectites from pyroclastic rocks of Almería, Spain. Chem. Geol. 89, 353358.
Christidis, G. & Dunham, A.C. (1993) Compositional variations in smectites. Part I: alteration of intermediate volcanic rocks. A case study from Milos Island, Greece. Clay Miner. 28, 255273.
Christidis, G. & Dunham, A.C. (1997) Compositional variations in smectites. Part II: alteration of acidic precursors, a case study from Milos Island, Greece. Clay Miner. 32, 253270.
C¸oban, F. & Ece Ö, .I. (1999) Fe3+-rich montmorillonitebeidellite series in Ayvacik bentonite deposit, Biga Peninsula, northwest Turkey. Clays Clay Miner. 47, 165173.
Crovisier, J.L., Honnorez, J. & Eberhart, J.P. (1987) Dissolution of basaltic glass in seawater: Mechanism and rat e. Geoch im. Cosmochim. Acta, 51, 29772990.
Crovisier, J.L., Honnorez, J., Fritz, B. & Petit, J.-C. (1992) Dissolution of superglacial volcanic glasses from Iceland: laboratory studies and modelling. Appl. Geochem., Suppl. Issue 1, 5581.
Decarreau, A., Colin, F., Herbillon, A., Manceau, A., Nahon, D., Paquet, H., Trauth-Badaud, D. & Trescases, J.J. (1987) Domain segregation in Ni-Fe-Mg-smectites. Clays Clay Miner. 35, 110.
Decarreau, A., Grauby, O. & Petit, S. (1992) The actual distribution of octahedral cations in 2:1 clay minerals: Results from clay synthesis. Appl. Clay Sci. 7, 147167.
de'Gennaro, M., Colella, C. & Pansini, M. (1993) Hydrothermal conversion of trachytic glass into zeolites. II Reaction with high- salinity waters. Neues Jahrb. Mineral. Monat. 3, 97110.
Dellino, P. & La Volpe, L. (1995) Fragmentation versus transportation mechanism in the pyroclastic sequence of Monte Pilato-Roche Rosse (Lipari, Italy). J. Volcanol. Geotherm. Res. 64, 211231.
De Kimpe, C.R. (1976) Formation of phyllosilicates and zeolites from pure silica-alumina gels. Clays Clay Miner. 24, 200207.
Jr.Dibble, W.E. & Tiller, W.A. (1981) Kinetic model of zeolite paragenesis in tuffaceous sediments. Clays Clay Miner. 29, 323330.
Fiore, S. (1993) The occurrence of smectite and illite in a pyroclastic deposit prior to weathering: Implication on the genesis of 2:1 clay minerals in volcanic soils. Appl. Clay Sci. 8, 249259.
Fiore, S., Huertas, F.J., Tazaki, K., Huertas, F. & Linares, J. (1999) A low temperature experimental alteration of a rhyolitic obsidian. Eur. J. Mineral. 11, 455469.
Güven, N. (1988) Smectites. Pp. 497559 in. Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1993) The beidellite-saponite series: An experimental approach. Eur. J. Mineral. 5, 623635.
Harder, H. (1972) The role of magnesium in the formation of smectite minerals. Chem. Geol. 10, 3139.
Hawkins, D.B. & Roy, R. (1963) Distribution of trace elements between clays and zeolites formed by hydrothe rmal alterati on of syntheti c basalts. Geochim. Cosmochim. Acta, 27, 785795.
Hess, P.C. (1966) Phase equilibria of some minerals in the K2O–Na2O–Al2O3–SiO2–H2O system at 25°C and 1 atmosphere. Am. J. Sci. 264, 289309.
Huertas, F.J., Cuadros, J., Huertas, F. & Linares, J. (2000) Experimental study of the hydrothermal formation of smectite in the beidellite-saponite series. Am. J. Sci. 300, 504527.
Kawano, M. & Tomita, K. (1992) Formation of allophane and beidellite during hydrothermal alteration of volcanic glass below 200°C. Clays Clay Miner. 40, 666674.
Kawano, M., Tomita, K. & Kamino, Y. (1993) Formation of clay minerals during low temperature experimental alteration of obsidian. Clays Clay Miner. 41, 431441.
Keeling, J.L., Raven, M.D. & Gates, W.P. (2000) Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley Graphite Mine, South Australia. Clays Clay Miner. 48, 537548.
Kharaka, Y.K., Gunter, W.T., Aggarwal, P.K., Perkins, E.H. & De Braal, J.D. (1988) SOLMINEQ.88: A computer program for geochemical modeling of water- rock interaction. U.S. Geological Survey Water-Resources Investigation Report 884227.
Kloprogge, J.T., Komarneni, S. & Amonette, J.E. (1999) Synthesis of smectite clay minerals: a critical review. Clays Clay Miner. 47, 529554.
Li, G., Peacor, D.R. & Coombs, D.S. (1997) Transformation of smectite to illite in bentonite and associated sediments from Kaka Point, New Zealand: contrast in rate and mechanism. Clays Clay Miner. 45, 5467.
Linares, J. (1987) Chemical evolution of hydrothermal smectites (Almería, SE Spain). Pp. 567584 in: Geochemistry and Mineral Formation in the Earth Surface (Rodríguez-Clemente, R. & Tardy, Y., editors). CNR-CNRS, Madrid.
Magonthier, M.-C., Petit, J.-C. & Dran, J.-C. (1992) Rhyolitic glasses as natural analogues of nuclear waste glasses: behaviour of an Icelandic glass upon natural corrosion. Appl. Geochem., Suppl. Issue 1, 8393.
Masuda, H., O'Neil, J.R., Jiang, W.-T. & Peacor, D.R. (1996) Relation between interlayer composition of authigenic smectite, mineral assemblages, I/S reaction rate and fluid composition in silicic ash of the Nankai Trough. Clays Clay Miner. 44, 443459.
Mizota, C. & Faure, K. (1998) Hydrothermal origin of smectite in volcanic ash. Clays Clay Miner. 46, 178192.
Nemecz, E. (1981) Clay Minerals. Akadémiai Kiadó, Budapest.
Shapiro, L. (1975) Rapid analysis of silicate, carbonate, and phosphate rocks. U.S. Geol. Surv. Bull. 1401, 176.
Tazaki, K., Fyfe, W.S. & van der Gaast, S.J. (1989) Growth of clay minerals in natural and synthetic glasses. Clays Clay Miner. 37, 348354.
Tazaki, K., Tiba, T., Aratani, M. & Miyachi, M. (1992) Structural water in volcanic glass. Clays Clay Miner. 40, 122127.
Thomassin, J.-H., Boutonnat, F., Touray, J.-C. & Baillif, P. (1989) Geochemical role of the water/rock ratio during the experimental alteration of a synthetic basaltic glass at 50°C. An XPS and STEM investigation. Eur. J. Mineral. 1, 261274.
Tomita, K., Yamane, H. & Kawano, M. (1993) Synthesis of smectite from volcanic glass at low temperature. Clays Clay Miner. 41, 655661.
Weaver, C.E. & Pollard, L.D. (1975) The Chemistry of Clay Minerals. Elsevier, Amsterdam.
Wolery, T.J. (1992) EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user's guide, and related documentation (version 7.0). Laurence Livermore National Laboratory, CA, USA.
Yamada, H., Yoshioka, K., Tamura, K., Fujii, K. & Nakazawa, H. (1999) Compositional gap in dioctahedral- trioctahedral smectite system: beidellite-saponite pseudo-binary join. Clays Clay Miner. 47, 803810.

Keywords

Smectite formation in rhyolitic obsidian as inferred by microscopic (SEM-TEM-AEM) investigation

  • S. Fiore (a1), F. J. Huertas (a2), F. Huertas (a2) and J. Linares (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed