Skip to main content Accessibility help

Role of clays in the diagenetic history of nitrogen and boron in the Carboniferous of Donbas (Ukraine)

  • J. Środoń (a1) and M. Paszkowski (a1)


The evolution of the nitrogen and boron content of shales during diagenesis and anchimetamorphism was studied in the Carboniferous rocks of Donbas by means of the bulk rock chemical analysis and the XRD quantification of mineral composition, aided by CEC and EGME sorption measurements. The contributions of the organic-bound N and B were taken into account, based on the literature data (B) and on the relationship established in the course of this study (N). 28–98% of the total N and 80–100% of the total B are contained in the mineral fraction of the investigated shales.

The mineral nitrogen is located mostly in illite and accounts for 3 to 64% of the sites available for its fixation in 1Md illite. The fixation of N by illite seems to diminish in the course of diagenesis, but additional fixation occurs in newly formed 2M1 illite during the anchimetamorphic stage. The volume of N contained in illite in most samples greatly surpasses the N available locally from the organic matter contained in shale. Modelling indicates that the measured level of N for K substitution in illite corresponds to the capture in 30 vol.% of shale of all N released in a basin containing 5 vol.% of coal.

Boron is held predominantly by the 1Md fraction (illite+smectite). During diagenesis boron is redistributed into the 1Md illite, and during anchimetamorphism it is released from the 1Md illite and incorporated into new 2M1 illite. No indication of the net enrichment of pore water in B due to the clay alteration process was found.


Corresponding author


Hide All
Ader, M., Boudou, J.-P. Javoy, M. Goffe, B. & Daniels, E. (1998) Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (U.S.A.) and from the Bramsche Massif (Germany). Organic Geochemistry, 29, 315323.
Aloisi, G., Drews, M., Wallmann, K. & Bohrmann, G. (2004) Fluid expulsion from the Dvurechenskii mud volcano (Black Sea). Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles. Earth and Planetary Science Letters, 225, 347363.
Alsaab, D., Elie, M., Izart, A., Sachsenhofer, R.F., Privalov, V.A., Suarez-Ruiz, I., Martinez, L. & Panova, E.A. (2008) Distribution of thermogenic methane in Carboniferous coal seams of the Donets Basin (Ukraine): Applications to exploitation of methane and forecast of mining hazards. International Journal of Coal Geology, 74, 154162.
Bardon, C., Bieber, M.T., Cuiec, L., Jacquin, C., Courbot, A., Deneuville, G., Simon, J.M., Voirin, J.M., Espy, M., Nectoux, A. & Pellerin, A. (1983) Recommandations pour la détermination expérimentale de la capacité d'échange de cations des milieux argileux. Revue de l' Institut Français du Pétrole, 38,621-626.
Bottomley, D.J. & Clark, I.D. (2004) Potassium and boron co-depletion in Canadian Shield brines: evidence for diagenetic interactions between marine brines and basin sediments. Chemical Geology, 203, 225236.
Boudou, J.-P., Schimmelmann, A., Ader, M., Mastalerz, M., Sebilo, M. & Gengembre, L. (2008) Organic nitrogen chemistry during low-grade metamorphism. Geochimica et Cosmochimica Acta, 72, 11991221.
Cooper, I.E. & Abedin, K.Z. (1981) The relationship between fixed ammonium-nitrogen and potassium in clays from a deep well on the Texas Gulf Coast. Texas Journal of Science, 34, 103111.
Daniels, E.J. & Altaner, S.P. (1990) Clay mineral authigenesis in coal and shale from the Anthracite region, Pennsylvania. American Mineralogist, 75, 825839.
Ellis, D.V. & Singer, J.M. (2007) P. 353 in: Well Logging for Earth Scientists. Springer, Dordrecht, The Netherlands.
Eskenazy, G., Delibaltova, D. & Mincheva, E. (1994) Geochemistry of boron in Bulgarian coals. International Journal of Coal Geology, 25, 93 —110.
Francu, J., Müller, P., Šucha, V. & Zatkaliková, V. (1990) Organic matter and clay minerals as indicators of thermal history in the Transcarpathian Depression (East Slovakian Neogene Basin) and the Vienna Basin. Geologica Carpathica, 41, 535546.
Frederickson, A.F. & Reynolds, R.C. Jr. (1960) Geochemical method for determining paleosalinity. Clays and Clay Minerals, Proceedings of the Eighth National Conference, 202.
Goldschmidt, V.M. & Peters, C. (1932) Geochemie des Bors: I, II. Nachrichten Der Akademie der Wissenschaften in Göttingen, Mathematische-Physikalische Klasse 111, 402-407, 528545.
Goodarzi, F. & Swaine, D.J. (1994) The influence of geological factors on the concentration of boron in Australian and Canadian coals. Chemical Geology, 118, 301318.
Grad, M., Gryn, D., Guterch, A., Janik, T., Keller, R., Lang, R., Lyngsie, S.B., Omelchenko, V., Starostenko, V.I., Stephenson, R.A., Stovba, S.M., Thybo, H. & Tolkunov, A. (2003) “DOBREfraction'99” - velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East Ukraine. Tectonophysics, 371, 81110.
Hower, J.C., Ruppert, L.F. & Williams, D.A. (2002) Controls of boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield, USA. International Journal of Coal Geology, 53, 2742.
Jackson, M.L. (1975) Soil Chemical Analysis — Advanced Course. Published by the author, Madison, Wisconsin, USA.
Karpova, G.V. (1969) Clay mineral post-sedimentary ranks in terrigenous rocks. Sedimentology, 13, 520.
Krooss, B.M., Jurisch, A. & Plessen, B. (2006) Investigation of the fate of nitrogen in Palaeozoic shales of the Central European Basin. Journal of Geochemical Exploration, 89, 191194.
Lindgreen, H., Drits, V.A., Sakharov, B.A., Salyn, A.L., Wrang, P. & Dainyak, L.G. (2000) Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area. American Mineralogist, 85, 12231238.
Mingram, B., Hoth, P., Luders, V. & Harlov, D. (2005) The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin. International Journal of Earth Sciences, 94, 10101022.
Moore, D.M. & Reynolds, R.C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford-New York, 378 pp.
Mystkowski, K., Środoń, J. & McCarty, D.K. (2002) Application of evolutionary programming to automatic XRD quantitative analysis of clay-bearing rocks. The Clay Minerals Society 39th Annual Meeting, Boulder, Colorado, Abstracts with Programs.
Omotoso, O., McCarty, D.K., Hillier, S. & Kleeberg, R. (2006) Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup contest. Clays and Clay Minerals, 54, 748760.
Orsini, L. & Remy, J.-C. (1976) Utilisation du chlorure de cobaltihexammine pour la determination simultanee de la capacite d'echange et des bases echangeables des sols. Science du Sol, 4, 269275.
Reynolds, R.C. Jr. (1965) Geochemical behavior of boron during the metamorphism of carbonate rocks. Geochimica et Cosmochimica Ada, 29, 11011114.
Sachsenhofer, R.F., Privalov, V.A. & Panova, E.A. (2011) Basin evolution and coal geology of the Donets Basin (Ukraine, Russia): An overview. International Journal of Coal Geology. doi:10.1016/j.coal.2011.05.002
Sivan, T.P. (1972) Statistical substantiation of the significance of boron dissolved in underground waters of the Crimea for oil and gas exploration. Soviet Geology, 10, 148151.
Smishko, R.M. (2002) Structural peculiarities of the Donets'k basin in connection with gas bearing. Visnik Lvivskogo Universitetu, Ser. Geol., 16, 6369.
Środoń, J. (2007) Illitization of smectite and history of sedimentary basins. Proceedings of the 11* EUROCLAY Conference, Aveiro, Portugal, 7482.
Środoń, J. (2009) Quantification of illite and smectite and their layer charges in sandstones and shales from shallow burial depth. Clay Minerals, 44, 421434.
Środoń, J. (2010) Evolution of boron and nitrogen content during illitization of bentonites. Clays and Clay Minerals, 58, 743756.
Środoń, J. & McCarty, D.K. (2008) Surface area and layer charge of smectite from CEC and EGME/H2O retention measurements. Clays and Clay Minerals, 56, 142161.
Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C. & Eberl, D.D. (2001) Quantitative XRD analysis of clay-rich rocks from random preparations. Clays and Clay Minerals, 49, 514528.
Środoń, J., Kotarba, M., Biroii, A., Such, P., Clauer, N. & Wojtowicz, A. (2006) Diagenetic history of the Podhale-Orava basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite. Clay Minerals, 41, 747770.
Środoń, J., Zeelmaekers, E. & Derkowski, A. (2009) Charge of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays and Clay Minerals, 57, 650672.
Stevenson, F.J. (1962) Chemical state of the nitrogen in rocks. Geochimica et Cosmochimica Ada, 26, 797811.
Šucha, V., Kraus, I., Gerthofferova, H., Petes, J. & Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals, 28, 243253.
Šucha, V., Kraus, I. & Madejova, J. (1994) Ammonum illite from anchimetamorphic shales associated with anthracite in the Zemplinicum of the Western Carpathians. Clay Minerals, 29, 369377.
Šucha, V., Elsass, F., Eberl, D.D., Kuchta, L., Madejova, J., Gates, W.P. & Komadel, P. (1998) Hydrothermal synthesis of ammonium illite. American Mineralogist, 83, 5867.
Thamdrup, B. & Dalsgaard, T. (2008). Nitrogen cycling in sediments. Pp. 527568 in: Microbial Ecology of the Oceans (Kirchman, D.L., editor). John Wiley & Sons, Inc.
Vishnevskaya, V.S. & Sedaeva, K.M. (2000) Specific features of Early-Middle Carboniferous sedimentation in the southern part of the East European Platform. Lithology and Mineral Resources, 35, 455465.
Wiewiora, A. & Wilamowski, A. (1996) The relationship between composition and b for chlorite. Geologica Carpathica - Series Clays, 5, 7987.
Williams, L.B. & Ferrell, R.E. Jr., (1991) Ammonium substitution in illite during maturation of organic matter. Clays and Clay Minerals, 39, 400408.
Williams, L.B., Hervig, R.L., Holloway, J.R. & Hutcheon, I. (2001a) Boron isotope geochemistry during diagenesis. Part I. Experimental determination of fractionation during illitization of smectite. Geochimica et Cosmochimica Ada, 65, 17691782.
Williams, L.B., Hervig, R.L. & Hutcheon, I. (2001b) Boron isotope geochemistry during diagenesis. Part II. Applications to organic-rich sediments. Geochimica et Cosmochimica Ada, 65, 17831794.
Zorski, T., Ossowski, A., Środoń, J. & Kawiak, T. (2011) Evaluation of mineral composition and petrophysieal parameters by the integration of core analysis data and wireline well log data: the Carpathian Foredeep case study. Clay Minerals, 46, 2545.
Zuber, A. & Chowaniec, J. (2009) Diagenetic and other highly mineralized waters in the Polish Carpathians. Applied Geochemistry, 24, 18891900.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed