Skip to main content Accessibility help
×
Home

The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage

  • A. Meunier (a1), B. Velde (a2) and L. Griffault (a3)

Abstract

The thermal stability of bentonites is of particular interest for containment barriers in nuclear waste storage facilities. The kinetics of smectite reactions have been investigated under laboratory conditions for some time. The variables of time, chemical composition and temperature have been varied in these experiments. The results of such an assessment are that there are about as many kinetic values deduced from experiments as there are experiments.

Experiments using natural bentonite to study the smectite-to-illite conversion have been interpreted as a progressive transformation of montmorillonite to illite. It is highly probable that the initial reaction product is not illite but a high-charge beidellite + saponite + quartz mineral assemblage which gives, then, beidellite-mica interstratified mixed-layer minerals. These experimental reactions are noticeably different from those of diagenesis, being closer to reactions in hydrothermal systems.

Copyright

References

Hide All
Beaufort, D., Papapanagiotou, P., Patrier, P., Fujimoto, K. & Kasai, K. (1995) High temperature smectites in active geothermal field. Proc. 8th Int. Sym. Water-Rock Interact., 493-496.
Bethke, C.M. & Altaner, S.P. (1986) Layer-by-layer mechanisms of smectite illitization and application to a new rate law. Clays Clay Miner. 34, 136–145.
Bouchet, A., Lajudie, A., Rassineux, F., Meunier, A. & Atabek, R. (1992) Mineralogy and kinetics of alteration of a mixed-layer kaolinite/smectite in nuclear waste disposal simulation experiment (Stripa site, Sweden). Pp. 113-123 in: Clays and Hydrosilicate Gels in Nuclear Fields (Meunier, A., editor).
Chermak, J.A. (1989) The kinetics and thermodynamics of clay mineral reactions. PhD thesis, Virginia Polytechnic Institute, Blacksburg, Va, USA.
Eberl, D.D. (1978) The reaction of montmorillonite to mixed layer clay: the effect of interlayer alkali and alkaline-earth cations. Geochim. Cosmochim. Acta, 42, 17.
Eberl, D.D. & Hower, J. (1976) Kinetics of illite formation. Geol. Soc. Amer. Bull. 87, 13261330.
Eberl, D.D., Whitney, G. & Khoury, H. (1978) Hydrothermal reactivity of smectite. Am. Miner. 63, 401409.
Elliott, W.C., Aronson, J.L., Matisoff, G. & Gautier, D.L. (1991) Kinetics of the smectite to illite transformation in the Denver basin: clay mineralogy, K-Ar data and mathematical modelling. Bull. Amer. Assoc. Petrol. Geol. 75, 436462.
Esposito, K.J. & Whitney, G. (1995) Thermal effects of thin igneous intrusions on diagenetic reactions in a Tertiary basin of southwestern Washington. U. S. Geol. Surv. Bull. 2085-c, 40p.
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1993) The beidellite-saponite series: an experimental approach. Eur. J. Miner. 5, 623–635.
Howard, J.J. (1981) Lithium and potassium saruration of illite/smectite from interlaminated shales and sandstones. Clays Clay Miner. 29, 136142.
Howard, J.J. & Roy, D.M. (1985) Development of layer charge and kinetics of experimental smectite alteration. Clays Clay Miner. 33, 8188.
Huang, W.L., Longo, J.M. & Pevear, D.R. (1993) An experimentally derived kinetic model for smectiteto- illite conversion and its use as a geothermometer. Clays Clay Miner. 41, 162177.
Inoue, A. (1983) Potassium fixation of clay minerals during hydrothermal alteration. Clays Clay Miner. 31, 8191.
Meunier, A. & Velde, B. (1989) Solid solutions in I-S mixed layer minerals and illite. Am. Miner. 74, 11061112.
Nadeau, P.H., Wilson, M.J., McHardy, W.J. & Tait, J.M. (1985) The conversion of the smectite to illite during diagenesis. Evidence from some illitic clays from bentonites and sandstones. Mineral. Mag. 49, 393400.
Perry, E. & Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner. 18, 165178.
Proust, D., Léchelle, J., Meunier, A. & Lajudie, A. (1990) Hydrothermal reactivity of mixed-layer kaolinite/ smectite and implications for radioactive waste disposal. Eur. J. Miner. 2, 313325.
Pusch, R. & Madsen, F.T. (1995) Aspects on the illitization of the Kinnekulle bentonites. Clays Clay Miner. 43, 261270.
Pytte, A.M. & Reynolds, R.C. (1989) The thermal transformation of smectite to illite. Pp. 133–140 in: The Thermal History of Sedimentary Basin: Methods and Case History (Naesser, N.D. & McCulloh, T.H., editors), Springer-Verlag, New York.
Robertson, H.E. & Lahann, R.W. (1981) Smectite to illite conversion rates: effects of solution chemistry. Clays Clay Miner. 29, 129135.
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content in aluminous smectites. Clays Clay Miner. 17, 115149.
Small, J.S. (1993) Experimental determination of the rates of precipitation of authigenic illite and kaolinite in the presence of aqueous oxalate and comparison to the K-Ar ages of authigenic illite in reservoir sandstones. Clays Clay Miner. 41, 191208.
Šucha, V., Kraus, I., Gerthofferova, H., Petes, J. & Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak basin. Clay Miner. 28, 243253.
Velde, B. (1969) The compositional join muscovitepyrophyllite at moderate temperatures and pressures. Bull. Soc. Ft. Miner. Cristal. 92, 360368.
Velde, B. (1985) Clay Minerals: A Physico-Chemical Explanation of their Occurrence. Elsevier, Amsterdam.
Velde, B. & Brusewitz, A.M. (1986) Compositional variation in component layers in natural illite/ smectite. Clays Clay Miner. 34, 651657.
Velde, B. & Lanson, B. (1993) Comparison of I-S transformation and maturity of organic matter at elevated temperature. Clays Clay Miner. 41, 178183.
Velde, B. & Vasseur, G. (1992) Estimation of the diagenetic smectite-to-illite transformation in the time-temperature space. Am. Miner. 77, 967–976.
Whitney, G. & Northrop, H.R. (1988) Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen isotope systematics. Am. Miner. 73, 7790.
Whitney, G. & Velde, B. (1993) Changes in particle morphology during illitization: an experimental study. Clays Clay Miner. 41, 209218.
Yamada, H. & Nakasawa, H. (1993) Isothermal treatments of regularly interstratified montmorillonitebeidellite at hydrothermal conditions. Clays Clay Miner. 41, 726730.
Yamada, H., Nakasawa, H., Yoshioka, K. & Fujita, T. (1991) Smectites in the montmorillonite series. Clay Miner. 26, 359369.

The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage

  • A. Meunier (a1), B. Velde (a2) and L. Griffault (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed