Skip to main content Accessibility help
×
Home

Potential use of Kebilian clay reserves (southern Tunisia) for the production of geopolymer materials

  • Chedlia Ounissi (a1), Salah Mahmoudi (a1), Luca Valentini (a2), Ali Bennour (a3), Enrico Garbin (a4), Gilberto Artioli (a2) and Mabrouk Montacer (a1)...

Abstract

The aim of this study was to help drive the Tunisian construction industry towards a more sustainable approach given the existence of abundant local raw material deposits that could be exploited for the production of low-CO2 binders. Various clay sediments from the Kebili region (southern Tunisia) were characterized by chemical analysis, X-ray diffraction, thermal analysis and geotechnical tests to determine their suitability for the preparation of geopolymer binders. The clays consist of illite and kaolinite with other accessory minerals. To test the possibility of using these materials as precursors for the production of low-CO2 and low-cost geopolymers, the raw samples were calcined and activated by addition of solid sodium silicate. Compressive strength tests performed on four alkali-activated clays show that promising mechanical performance may be achieved, with mechanical strength values as high as 25 MPa after 7 days, depending on the clay composition. The mechanical strength is related to the SiO2:Al2O3 and Al2O3:(NaO2 + K2O) ratios. Careful selection of the raw materials is, therefore, an essential step in the exploitation of clay deposits to be used for the production of ecological materials such as geopolymers.

Copyright

Corresponding author

Footnotes

Hide All

Associate Editor: Joao Labrincha

Footnotes

References

Hide All
Abbes, A. & Tlig, S. (1991) Tectonique précoce et sédimentation de la série crétacée dans le Bassin des Chotts (Tunisie du Sud). Géologie Méditerranéenne, 18, 149161.
Allahverdi, A. & Kani, E.N. (2009) Construction wastes as raw materials for geopolymer binders. International Journal of Civil Engineering, 7, 154160.
Alyousef, R., Benjeddou, O., Khadimallah, M.A., Mohamed, A.M. & Soussi, C. (2018) Study of the effects of marble powder amount on the self-compacting concretes properties by microstructure analysis on cement-marble powder pastes. Advances in Civil Engineering, 2018, 6018613.
Anis, Z., Wissem, G., Riheb, H., Biswajeet, P. & Essghaier, G.M. (2019) Effects of clay properties in the landslides genesis in flysch massif: case study of AïnDraham, north western Tunisia. Journal of African Earth Sciences, 151, 146152.
Babaee, M. & Castel, A. (2016) Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete. Cement and Concrete Research, 88, 96107.
Ben Youssef, M. & Peybernes, B. (1986) Données micropaléontologiques nouvelles sur le Crétacé inférieur marin du Sud Tunisien. Journal of African Earth Sciences, 5, 217231.
Bennour, A., Mahmoudi, S., Srasra, E., Boussen, S. & Htira, N. (2015a) Composition, firing behavior and ceramic properties of the Sejnène clays (northwest Tunisia). Applied Clay Science, 115, 3038.
Bennour, A., Mahmoudi, S., Srasra, E., Hatira, N., Boussen, S., Ouaja, M. & Zargouni, F. (2015b) Identification and traditional ceramic application of clays from the Chouamekh region in south-eastern Tunisia. Applied Clay Science, 118, 212220.
Boussen, S., Sghaier, D., Chaabani, F., Jamoussi, B. & Bennour, A. (2016) Characteristics and industrial application of the Lower Cretaceous clay deposits (Bouhedma Formation), southeast Tunisia: potential use for the manufacturing of ceramic tiles and bricks. Applied Clay Science, 123, 210221.
Brew, D.R.M. & MacKenzie, K.J.D. (2007) Geopolymer synthesis using silica fume and sodium aluminate. Journal of Materials Science, 42, 39903993.
Carvalho, J., Carvalho, P., Pinto, A.T. & Labrincha, J.A. (2008) Activation of mixtures of natural clay and glass cullet rejects. Clay Minerals, 43, 657667.
Casagrande, A. (1947) Plasticity chart for the classification of cohesive soils. Transactions of the American Society of Civil Engineering, 783, 811.
Celik, H. (2010) Technological characterization and industrial application of two Turkish clays for the ceramic industry. Applied Clay Science, 50, 245254.
Chakraborty, A.K. (2014) Phase Transformation of Kaolinite Clay. Springer India, New Delhi, India, 360 pp.
Cui, X.M., Zheng, G.J., Han, Y.C., Su, F. & Zhou, J. (2008) A study on electrical conductivity of chemosynthetic Al2O3–2SiO2 geoploymer materials. Journal Power Sources, 184, 652656.
Davidovits, J. (1988) Geopolymer chemistry and properties. Geopolymer, 88, 2548.
Davidovits, J. (2011) Geopolymer Chemistry and Applications, 3rd edition. Institut Geopolymere, Saint-Quentin, France.
Dietel, J., Warr, L.N., Bertmer, M., Steudel, A., Grathoff, G.H. & Emmerich, K. (2017) The importance of specific surface area in the geopolymerization of heated illitic clay. Applied Clay Science, 139, 99107.
Ding, Y., Dai, J.G. & Shi, C.J. (2016) Mechanical properties of alkali- activated concrete: a state-of-the-art review. Construction and Building Materials, 127, 6879.
Diop, M.B. & Grutzeck, M.W. (2008) Low temperature process to create brick. Construction and Building Materials, 22, 11141121.
Duxson, P.S.W.M., Mallicoat, S.W., Lukey, G.C., Kriven, W.M. & Van Deventer, J.S. (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 29, 820.
Essaidi, N., Samet, B., Baklouti, S. & Rossignol, S. (2013) Effect of calcination temperature of Tunisian clays on the properties of geopolymers. Ceramics, 57, 251257.
Essaidi, N., Samet, B., Baklouti, S. & Rossignol, S. (2014) Feasibility of producing geopolymers from two different Tunisian clays before and after calcination at various temperatures. Applied Clay Science, 88, 221227.
Farmer, V.C. (1974) The Layers Silicates. The Infrared Spectra of Minerals Monograph 4. Mineralogical Society, London, UK, pp. 331363.
Fernandez, R., Martirena, F. & Scrivener, K.L. (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, 41, 113122.
Fernández-Jiménez, A., Pastor, J.Y., Martín, A. & Palomo, A. (2010) High-temperature resistance in alkali-activated cement. Journal of the American Ceramic Society, 93, 34113417.
Ferrari, S. & Gualtieri, A.F. (2006) The use of illitic clays in the production stoneware tile ceramics. Applied Clay Science, 32, 7381.
Garg, N. & Skibsted, J. (2014) Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems. Journal of Physical Chemistry C, 118, 1146411477.
Ghanmi, M. & Potfaj, M. (1987) Carte géologique de la Tunisie au 1/100 000. Feuille n°82, Oglet Marteba. Office National des Mines de Tunisie, Tunis, Tunisia.
Ghanmi, M. & Potfaj, M. (1991) Données stratigraphiques sur la chaîne de Tebaga de Kebili Jebel Aziza (Tunisie méridionale): conséquences paléogéographiques et tectoniques. Notes du Service Géologique Tunisie, 58, 2128.
Glukovsky, V.D. (1959) Gruntosilikaty. Grosstrojizdat, Kiev, Ukraine.
Grabowska-Olszewska, B. (2003) Modelling physical properties of mixtures of clays example of a two-component mixture of kaolinite and montmorillonite. Applied Clay Science, 22, 251259.
Guo, Y. & Rockstraw, D.A. (2006) Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon, 44, 14641475.
Hajjaji, M., Kacim, S., Alami, A., El Bouadili, A. & El Mountassir, M. (2001) Chemical and mineralogical characterization of a clay taken from the Moroccan Meseta and a study of the interaction between its fine fraction and methylene blue. Applied Clay Science, 20, 112.
Hajjaji, W., Moussi, B., Hachani, M., Medhioub, M., Lopez-Galindo, A., Rocha, F. et al. (2010) The potential use of Tithonian–Barremian detrital deposits from central Tunisia as raw materials for ceramic tiles and pigments. Applied Clay Science, 48, 552560.
Hammami-Ben Zaied, F., Abidi, R., Slim-Shimi, N. & Somarin, A.K. (2015) Potentiality of clay raw materials from grain the ceramic industry. Applied Clay Science, 112, 19.
Handke, M. & Mozgawa, W. (1993) Vibrational spectroscopy of the amorphous silicates. Vibrational Spectroscopy, 5, 7584.
He, C., Osbaeck, B. & Makovicky, E. (1995) Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cement and Concrete Research, 25, 16911702.
Hollanders, S., Adriaens, R., Skibsted, J., Cizer, Ö. & Elsen, J. (2016) Pozzolanic reactivity of pure calcined clays. Applied Clay Science, 132, 552560.
Hounsi, A.D., Lecomte-Nana, G.L., Djétéli, G. & Blanchart, P. (2013) Kaolin-based geopolymers: effect of mechanical activation and curing process. Construction and Building Materials, 42, 105113.
Keppert, M., Vejmelková, E., Bezdička, P., Doleželová, M., Čáchová, M., Scheinherrová, L. et al. (2018) Red-clay ceramic powders as geopolymer precursors: consideration of amorphous portion and CaO content. Applied Clay Science, 161, 8289.
LCPC (1987) Limites d'Atterberg, limite de liquidité, limite de plasticité. Méthode d'essai n°19. Laboratoire Central des Ponts et Chaussées, Paris, France, 26 pp.
Li, Z., Zhang, W., Wang, R., Chen, F., Jia, X. & Cong, P. (2019) Effects of reactive MgO on the reaction process of geopolymer. Materials, 12, 526.
Liebau, F. (1985) Structural Chemistry of Silicates: Structure, Bonding and Classification. Springer Science & Business Media, Berlin, Germany.
Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P. & Illikainen, M. (2018) One-part alkali-activated materials: a review. Cement and Concrete Research, 103, 2134.
M'barek-Jemaï, M.B., Sdiri, A., Salah, I.B., Aissa, L.B., Bouaziz, S. & Duplay, J. (2017) Geological and technological characterization of the Late Jurassic–Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry. Journal of African Earth Sciences, 129, 282290.
MacKenzie, K.J.D. (2009) Utilisation of non-thermally activated clays in the production of geopolymers. Pp. 296316 in: Geopolymers: Structure, Processing, Properties and Industrial Applications (Provis, J.L. & Van Deventer, J.S.J., editors). Elsevier, Amsterdam, The Netherlands.
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.
Mahmoudi, S., Bennour, A., Meguebli, A., Srasra, E. & Zargouni, F. (2016) Characterization and traditional ceramic application of clays from the Douiret region in South Tunisia. Applied Clay Science, 127, 7887.
Marsh, A., Heath, A., Patureau, P., Evernden, M. & Walker, P. (2018) Alkali activation behavior of un-calcined montmorillonite and illite clay minerals. Applied Clay Science, 166, 250261.
McConville, C.J. & Lee, W.E. (2005) Microstructural development on firing illite and smectite clays compared with that in kaolinite. Journal of the American Ceramic Society, 88, 22672276.
Merabtene, M., Kacimi, L. & Clastres, P. (2019) Elaboration of geopolymer binders from poor kaolin and dam sludge waste. Heliyon, 5, e01938.
Ministry of Industry and SMEs, Republic of Tunisia (2014) CEPI Brief No. 6: Strategic positioning study of the marble branch. Available online: http://www.tunisianindustry.nat.tn/en/download/CEPI/IMCCV02.pdf
Mkaouar, S., Maherzi, W., Pizette, P., Zaitan, H. & Benzina, M. (2019) A comparative study of natural Tunisian clay types in the formulation of compacted earth blocks. Journal of African Earth Sciences, 160, 103620.
Mohammed, S. (2017) Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: a review. Construction and Building Materials, 140, 1019.
Montani, C. (2017) XXVIII RapportoMarmo e Pietrenel Mondo 2017 (XXVIII World Marble and Stones Report 2017). Aldus Casa di Edizione, Carrara, Italy, 250 pp.
Mozgawa, W., Sitarz, M. & Rokita, M. (1999) Spectroscopic studies of different aluminosilicate structures. Journal of Molecular Structure, 511, 251257.
Nayak, P.S. & Singh, B.K. (2007) Instrumental characterization of clay by XRF, XRD and FTIR. Bulletin of Materials Science, 30, 235238.
Petit, S. (2006) Fourier transform infrared spectroscopy. Pp. 909918 in: Handbook of Clay Science (Bergaya, F. and Lagaly, G., editors). Developments in Clay Science, 5, Elsevier, Amsterdam, The Netherlands.
Provis, J.L. (2014) Geopolymers and other alkali activated materials: why, how, and what? Materials and Structures, 47, 1125.
Rabia, M.C. (1984) Etude géologique de la région des Chotts par télédétection spatiale, détection de la radioactivité naturelle et analyse hydrogéochimique. Thèse de troisième cycle, Université de Bordeaux, France, 190 pp.
Reig, L., Tashima, M.M., Borrachero, M.V., Monzó, J., Cheeseman, C.R. & Payá, J. (2013) Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98106.
RILEM (1997) 119-TCE: avoidance of thermal cracking in concrete at early ages. Materials and Structures, 30, 1464.
Sabir, B.B., Wild, S. & Bai, J. (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites, 23, 441454.
Salah, I.B., Sdiri, A., Jemai, M.B.M.B. & Boughdiri, M. (2018) Potential use of the lower Cretaceous clay (Kef area, northwestern Tunisia) as raw material to supply ceramic industry. Applied Clay Science, 161, 151162.
Sdiri, A., Higashi, T., Hatta, T., Jamoussi, F. & Tase, N. (2010) Mineralogical and spectroscopic characterization and potential environmental use of limestone from the Abiod formation, Tunisia. Environmental Earth Sciences, 61, 12751287.
Selmani, S., Essaidi, N., Gouny, F., Bouaziz, S., Joussein, E., Driss, A. & Rossignol, S. (2015) Physical–chemical characterization of Tunisian clays for the synthesis of geopolymers materials. Journal of African Earth Sciences, 103, 113120.
Shaqour, F., Ismeik, M. & Esaifan, M. (2017) Alkali activation of natural clay using a Ca(OH)2/Na2CO3 alkaline mixture. Clay Minerals, 52, 485496.
Sivapullaiah, P.V., Prasad, B.G. & Allam, M.M. (2008) Methylene blue surface area method to correlate with specific soil properties. Geotechnical Testing Journal, 31, 503512.
Srasra, E., Bergaya, F. & Fripiat, J.J. (1994) Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite–smectite clay. Clays and Clay Minerals, 42, 237241.
Tironi, A., Trezza, M.A., Scian, A.N. & Irassar, E.F. (2013) Assessment of pozzolanic activity of different calcined clays. Cement and Concrete Composites, 37, 319327.
Valentini, L., Contessi, S., Dalconi, M. C., Zorzi, F. & Garbin, E. (2018) Alkali-activated calcined smectite clay blended with waste calcium carbonate as a low-carbon binder. Journal of Cleaner Production, 184, 4149.
Valentini, L., Mascarin, L., Ez-zaki, H., Bediako, M., Mwiti Marangu, J. & Bellotto, M. (2020) Use of waste calcium carbonate in sustainable cement. Presented at: RILEM Spring Convention 2020, Guimaraes, Portugal, 1014 March 2020.
van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures. Elsevier, Amsterdam, The Netherlands, 396 pp.
Xu, H. & Van Deventer, J. S. (2003) The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 216, 2744.
Zhang, Y.S., Sun, W. & Li, Z.J. (2010) Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 47, 271275

Keywords

Potential use of Kebilian clay reserves (southern Tunisia) for the production of geopolymer materials

  • Chedlia Ounissi (a1), Salah Mahmoudi (a1), Luca Valentini (a2), Ali Bennour (a3), Enrico Garbin (a4), Gilberto Artioli (a2) and Mabrouk Montacer (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.